
AD-A253 359

INTEGRATED VISION SYSTEM FOR A TARGET SEEKER

A FINAL REPORT

Submitted to the DTIC
Armament Directorate ELECTE

Wright Laboratory .U 2 8 1992

Eglin Air Force Base, Florida A
and the

U. S. Army Strategic Defense Command, Huntsville, AL

by

* Rafael M. Inigo
Principal Investigator

and

* E. S. McVey

Co-Principal Investigator

* Electrical Engineering Department

-School of Engineering and Applied Science

University of Virginia
Charlottesville, Virginia

This daum~,nt has been Opprovedfor Public elca:;e and $swo; ilsJ l 2 ,1 9
ditribution is uliite July 22, 1991

92-19993

• 92 ' 4 I2 7U9UnI4

The following researchers collaborated on the research reported here and in the writing of
this report.

Chewcharn Narathong, Ph.D., Consultant

Glenn Himes, Ph.D., Graduate Research Assistant

Chengho Hsin, MS

Jack Sigda, MS., Graduate Research Assistant

Gan Wang, Ph.D., Graduate Research Assistant

Qing Xu, Ph.D., Graduate Research Assistant

Begona Arrue, M.S., Graduate Research Assistant

Note: Dr. Himes was supported by a Virginia Engineering Foundation Fellowship and Ms. Arrue

by a fellowship from the Spanish Ministry of Education.
Accesion For

NTIS CRAM.

J oit;'catio 1-

By

Dist cAv i .ci

Dis

PREFACE

This program was conducted by the Electrical Engineering Department, School of
Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22903, under
Contract No. DASG60-88-C-0030 with the U. S. Army Strategic Defense Command. Dr. John
Johnson was the technical monitor and Ms. Starla Christakos and Mr. Jeff Brooks, WL/MNSI,
were alternate technical monitors. The program was for a period of forty-two months, from
February 21, 1988 to February 20, 1991. This is a final report covering the complete contract
period.

This report is complemented by the following, more extensive and detailed, reports:

1. A008 Software test description

2. A009 Software test report: Simulations

3. AOOA Engineering drawings, Level 1

4. AOOB Subsystem design analysis report: Algorithms

5. AOOC Final software manual

6. AOOD Computer software product

0W

iii

0 m mm •m

TABLE OF CONTENTS

Section Title Page

I IN TR O D U CTIO N ... 1
H M O TIO N/ED G E DETECTIO N ... 5

1. Introduction .. 5
2. General Specifications ... 5
3. The M odified Spatio-Tem poral A lgorithm ... 5
4. Appliction of Simplifying Techniques to the Algorithm 9
5. Sim ulations .. 14

H I IM A G E SEG M ENTATIO N .. 15
1. Introduction .. 15
2. Segm entation A lgorithm ... 15
3. Problem s .. 18

IV C EN TR O ID D ETER M IN ATIO N ... 21
1. Introduction .. 21
2. Centroid Calculation .. 21
3. Spatial Filtering for Peak Determ ination .. 23
4. H opfield N etwork for Peak D etection .. 25
5. Sim ulation Results ... 27

V LO G A R ITH M IC SPIR A L IM AG IN G .. 29
1. Introduction .. 29
2. Log-spiral Im age Description .. 29
3. A Hardware Implementation of Log-spiral Sensor ... 33

VI MULTI-PIXEL TARGET IDENTIFICATION SYSTEM 38
1. Introduction .. 38
2. Position in the Integrated V ision system .. 38
3. M H O N N Design ... 38
4. Sim ulations .. 46
5. Sum m ary ... 50

VII LINE CORRELATOR TRACKER FOR SCALING AND ROTATION 52
1. Introduction .. 52
2. Line Correlator Tracker .. 52
3. LCT Netw ork Im plem entation .. . 54
4. LCT Sim ulations .. . 58

VIII A SINGLE PIXEL TARGET DETECTION ... 60
* 1. Introduction ... 60

2. The Pipeline Target D etection A lgorithm ... 60
3. Im plem entation Considerations .. 66

iv

4. Sim ulations .. 66
5. Neural Network Implementation of the Pipeline System 68

IX HOUGH TRANSFORM SINGLE PIXEL-TARGET DETECTION 77
1. Introduction .. 77
2. Parallel Mapping Scheme .. 77
3. Peak Detection ... 79
4. Target Location ... 81
5. VLSI Implementation Analysis .. 81
6. Sim ulations .. 83

X CONCLUSIONS AND RECOMMENDATIONS .. 90
1. Conclusions .. 90 0
2. Recommendations ... 91

XI REFERENCES .. 93

0

II II I I I ni I I ini mJ=

LIST OF FIGURES

Figure Title Page

1.1 M ultipixel System Block Diagram ... 3
11.1 Solution from Constant Equations ... 8
p.2 Block Diagram of the M otion/edge Detection ... 8

11.3 Filter Flow Structure ... 10
11.4 Approximation of Gaussian First Derivative .. i0
11.5 Filtering Hierarchies to form Gaussian Images .. 11
11.6 Simulation of M otion Detection algorithm : Synthetic Im age 12
11.7 sim ulation of M otion Detection Algorithm : Real Image .. 13
I11.1 Results for Robot Sequence ... 16
111.2 Segm ented subimages ... 17
111.3 A Rotating rectangle .. 18
111.4 Objects in Two Overlapping W indows .. 20
IV. I M issile Plume Im ages ... 22
IV.2 Centroids for Gray, level/Binary Images .. 22
IV.3 Network to Find Column Location of Centroid .. 23
IV.4 Parallel Analog convolution Network .. 25
IV.5 Hopfield Network .. 27
V. 1 Log-Spiral Image Tessellation .. 30
V.2 Original Image of & Log-spiral Image ... 32
V.3 Analog Pixel-summ ing Arrangement ... 34
V.4 Digital Pixel-summing Arrangement .. 35
VI. 1 Original Second-order Neural Network Architecture ... 39
VI.2 Architecture of the Modified Second-order Neural Network with

Translational Properties .. 40
VI.3 Cydic Shift ... 43
VI.4 M HONN with A ssociative recall Learning M echanism .. 46
VII. 1 Row Search M echanism s .. 54
VII.2 General Architecture of the Neural Network .. 55
VII.3 ICBM Plume Images .. 58
VIII. I The W indow-centroid M ethod ... 62
V111.2 AND-Pipe Operations ... 62
VIII.3 Operation Flow of the PTDS Alorithm ... 64
VIII.4 A-AND Function ... 64
VIII.5 Simulation Results by the Original System Architecture with

Salt-noise Sequences ... 67
VIII.6 Simulation results by the Original System Architecture with

vi

Additive Gaussian Noise .. 69
VIII.7 BPN-implemented PE Structure .. 71
VIUI.8 Straight-line Pattern Vectors .. 73
VIII.9 Examples of Negative Class Patterns .. 74
VIII. 10 Training Pattern Examples.. 75
Vill. I I Simulation Results by the BPN-implemented System Architecture

with Salt-noise Sequences... 76
Xi. Mapping Scheme... 78
XI.2 Line Scheme.. 79
XI.3 Parameter Plane Summer with Thresholding.................................... 82
IX.4 Synthetic Image with Five Lines ... 84

vii

LIST OF TABLES

Table Title Page

VI. 1 MHONN OS, CS Invariant Pattern Recognition with Gray-level
*Inputs.. 47

VI.2 MHONN OS, CS Invariant Pattern Recognition with Binary Inputs 48
VL.3 MHONN Noise Tolerant Test Result - LSM icbml as input.................. 48
IV.4(a) MHONN Performance Test Result - Occlusion in LSM icbml............... 50
VI.4(b) MHONN Performance Test Result - Occlusion in LSM icbm3............... 51

*VII. 1 LCT Translation results for 90 Degree Plume................................... 58
VII.2 LCT Rotation/Scaling results for 90 Degree Plume............................ 59
VIII. 1 Hardware Requirements for an NxN TP .. 75
IX. 1 Simulation Results of Hough Transform... 85
IX.2 Simulation Results of Peak Detection Scheme 86
IX.3 Simulation Results of Peak Detection Scheme 87
MX.4 Simulation Results of Peak Detection Scheme 88

viai

GLOSSARY OF TERMINOLOGY

Activation Function -- the function that determines how the various input functions for the
input classes are combined to produce a value that is used as the input to the transfer function.

Afferent --(1) forward connections in ANNs. Also called feedforward connections. (2) neurons
that receive inputs from the external world in biological systems.

Analog-AND -- a two-operant AND function, one of the operants is a grey-level function and
the other is a binary value.

AND-Pipe -- an array processor of the pipeline system implementing the Continuity Filter Algo-
rithm.

Arc-of-Rings -- an approximation to the log spiral mapping that uses concentric circles and
radial lines to define the log-polar geometry. This gives image elements that are shaped like arc
sections of rings.

Array Processor -- An array of SIMD processing elements using conventional (nonassociative)
random-access memory.

Artificial Neural Network -- (ANN) a computational geometry or computing structure that is
designed to emulate some properties of real physical systems of neurons in some way. An ANN
is defined by its geometry or structure which consists of elements and connections.

Association -- relating one piece of information to another or others. In some cases many events
may associate to a single event. This may be a mapping of some events to others, or other rela-
tional transformation.

Associative Memory -- a particular type of adaptive filter operation.

Back Propagation Network -- the most popular ANN architecture. It learns by comparing the
actual and desired outputs and modifying the weights in terms of the error.

Bimodal -- having values grouped into largely disjoint sets.

Cell -- (1) a neuron in a real neural system or (2) an element in an ANN.

Cell Plane -- a subset of elements in a slab that share the same receptive field shape. The centers
of the fields may be at different locations.

Centroid - the center of mass of an object. For image processing, the point masses correspond
to the pixel intensities.

Centroid Tracker -- a track initiation algorithm that estimates target trajectories based on the

ix

0

trajectory continuity, constituting part of the PTDS algorithm.

Cluster -- a distinct, disjoint grouping of values that have some type of similarity, such as being
within a certain range or boundary.

Collective Property -- a property of a system that occurs due to the largenumber of elements
used. Alternatively called an emergent property.

Column -- a cut or grouping of elements across several layers. Represents a single signal path-
way in the system., a depth cut or core of the network.

Comparator -- an analog integrated circuit which compares an input voltage to a threshold and
forces the output to the voltage limits. For example, a 0 V to 5 V comparator with a 2.5 V thres-
hold would force voltages smaller than 2.5 V to an output of 0 V and would force voltages larger
than 2.5 V to an output of 5 V.

Competition -- selection of an element or elements based on some performance criterion, such
as Euclidean distance from an input pattern.

Computation Plane -- the mapped version of the image plane under the LSM. The horizontal
axis corrsponds to the natural log of the distance from the optical axis and the vertical axis to the
angle. This is analogous to the representation of visual infromation in area 17 of the cortex in
mammals.

Connectable area -- the area from which an element receives input connections. Can be sensory
(as in the retina), or signal (as in subsequent neural layers) in nature. Also called the receptive
field.

Connection -- unidirectional signal paths between elements. This is analogous to the axon in 0
neural systems. Also called interconnections.

Continuity Filter -- a target tracking algorithm that enhances signal-to-noise ratio based on the
target trajectory continuity, constituting part of the PTDS algorithm.

Current-Position Buffer -- a memory buffer at the Test-Pipe output that stores the tracking
results of the most recent frame cycle.

Cyclic Shift -- a shift in the computation plane of the LSM due to object rotation.

Data Plane -- a memory organization referring to a memory space storing the pixel values of an 0
entire image frame.

Efferent -- (1) backward connections in ANNs. (2) neurons that sent outputs to the external
world.

0
Element -- simple Processing Element (PE), the basic building block of neural processors.
Receives connections with their associated weights from external inputs and other elements,

x

combines them subject to some constrained functions, and produces a single output according to
* transfer function. This is analogous to the neuron body itself in neural systems. Also called a
cell.

Element Functions -- the functions that describe the operation of an element in a neural net-
work, specifically, the input function, the activation function, and the transfer function.

Energy Function -- a function that describes the solution "surface" of a problem, usually
derived through some type of Liapunov analysis. The solutions to the problem are the minima of
energy function and the optimal solution is the global minimum.

Excitatory Cell -- a cell that receives only excitatory connections.

Excitatory Connection -- a connection with a positive (+) weight.

Expected False Alarm Rate -- statistically estimated false alarm rate based on the probability
of error at a pixel location.

False Alarm Rate -- the value of accumulated ?alse alarms averaged over the entire image
sequence considered.

Feature -- some easily identifiable part of an object. Examples are edges, orientations of dif-
ferent parts, and things of this type. Motion can also be considered a feature.

Feedback Connections -- where every element in a slab is connected to every other element on
that slab.

Form Invariance -- under some transformation the shape of the object will not change, i.e. the
features remain the same. For example, form invariance under rotation means that shape formed
is the same regardless of the angular orientation of the object.

Fully Connected -- where every element on a slab or layer is connected to every element on
another slab or layer. Also called completely connected.

Functional Layer -- a group of elements within a layer that is used with other related function
layers to generate the more complex functions of a conceptual layer.

Geometry -- the actual physical structure of an ANN. Describes the connections between ele-
ments.

Graded Learning -- learning in which the weights are modified according to a grade of the
network's performance. Also called weakly supervised learning.

Grey level -- a black and white (shades of grey) representation of image intensity. Typically this
is expressed as integers between 0 (black) and 255 (white).

Higher Order Neural Network -- a neural network capable of using double and triple products

xi

of weighted inputs, in addition to linear combinations of these, in order to produce the desired
output. 0

Highly Supervised -- learning in which the desired output must be known so that an error vector
can be generated that is used in modifying the network's weights.

Histogram -- a plot of the number of pixels (vertical axis) in an image that have a certain grey
level, for every grey level (horizontal axis).

Hopfield Network -- an artificial neural network capable of solving optimization problems,
including the peak detection problem.

Hough Transform -- an image transformation technique devised for straight line determination
in an image. Can be extended to higher order curves.

Image Plane -- the actual sensory representation of the image information, specifically in the
LSM. Corresponds to the retinal arrangement of receptive fields in the retina.

Inhibitory Cell -- a cell that receives only inhibitory connections.

Inhibitory Connection -- a connection with a negative (-) weight.

Input Class -- a subdivision of the inputs to an element that contains inputs of the same type, i.e.
all the elements of a class have the same data type, the same kinds of weights, and the same
input function.

Input Function -- element function that describes how the inputs and weights of a certain input
class will be combined to produce an input to the activation function.

Interconnections -- (1) see connections, and (2) inputs to an element from other elements,
excluding external inputs.

Large-Scale -- the case where an image contains an object of many pixels so that the shape is
recognizable.

Lateral Connection --_"side-to-side" connections between elements in the same layer or slab
that allow such functions as competition and informational sharing.

Layer -- a specialized type of slab that receives essentially all of its inputs from a previous layer
and sends signals to a subsequent layer. This suggests a temporal as well as functional grouping
of cells.

Learning -- when a network has its connections or weights modified according to some rule.
Modification of synapse strengths in biological systems.

Learning Rule -- a rule or algorithm that describes the functions and procedure used in the
adaptation of a network's weights.

xi

I l ' 0

Log-Spiral-Mapping -- (LSM) a complex log of conformal mapping that approximates the
mapping between the periphery of the retina (image plane) and the cortex (computational plane).

Mask Frame -- a two-dimensional binary array of the same size as the input image frames used
by the Continuity Filter.

Mask Register -- an one-bit register in AND-Pipe implementing the Mask Frame.

Modified Higher-Order Neural Network -- a second order neural network with a modified
architecture that reduces the number of weights by orders of magnitude.

Multiplexor -- a logic element which specifies the location in digital word form of a non-zero
input line.

Neighborhood -- (1) a small group of elements around an el,'nent, and (2) a small group of pix-
els around a pixel. Also called a vicinity area.

Neural Network -- (1) see artificial neural network or (2) an actual system of neurons.

Neuron -- the building blocks of biological neural networks. Analogous to elements in ANNs.

Nonrecursive Linear Filter -- a digital linear filter whose unit sample response is zero outside
of some finite area.

Optical Axis -- a coordinate system with its (,, ,in in the center of the image and its "horizontal"
axis oriented according to a (possibly arbitr... horizon in the original frame of reference. The
vertical axis is orthogonal to this horizon in the same plane.

Optical Trajectory -- trajectory in the sensor caused by relative motion.

Ordinary Shift -- a shift in the interpretation plane of the LSM due to object scalings.

Paradigm -- a set of ideas that describes how a particular neural network operates. It contains a
fairly detailed description of the important structural and functional issues, specifically the
geometry, element functions, and learning rules.

Pattern Recognition -- (1) recognizing an object by its shape or (2) identification of a specific
thing based on some characteristic features of that thing. Definition (1) is the most common in
this report.

Pipeline -- a cascade of array processors.

Pipeline Target Detection System -- a real-time target detection and tracking system for
single-pixel target detection and identification, a subsystem of the Integrated Vision System for a
Target Seeker.

Pitch -- deviation of target from vertical plane.

xiii

Pixel -- short for picture element, (1) a single tiny piece of an image or (2) the light sensitive ele-
ment that detects the image. 0
Plume -- the image produced by a missile during the boost phase of its flight. It is a large and

bright object consisting primarily of the burning propellant and exhaust of the missile.

Receptive Field -- the area of a scene that excites the image plane or sensor.

Rectangular Grid -- rectangular image plane.

Region -- a subset of a slab in which all the elements share some common feature, such as
receiving inputs from the same element or other region.

Reinforcement -- (1) the modification of weights, (2) a signal indicating the network's perfor-
mance, and (3) a value used in weight modification.

Segmentation -- the partitioning of an image obtained by gathering its elements into sets likely
to correspond to meaningful objects.

Self-Organization -- learning or synapse modification that takes place without a teacher of any
sort.

Sigmoid -- a function often used in ANN's as an input-output relationship or transfer function
for an element. A smooth function that asymptotically approaches two limits with a short of
quasilinear region around some value as a transition between the two limits.'

Signal-to-Noise Ratio (Mean Square) -- the mean square value of the signal to noise ratio.

Signal-to-Noise Ratio (Root-mean-square) -- the square root of the signal to noise ratio. •

Small-Scale -- the case where an image contains an object that contains only a very few pixels
so that the shap is not recognizable.

Spatial Filter -- an analog parallel network which convolves an input data set by the conduc-
tance values of the connections.

Target-Frame Buffer -- a memory buffer at the Test-Pipe output that accumulatively stores the
reconstructed target trajectories.

Target Tracking -- altering the trajectory of the vehicle (or the orientation of the sensor) so that
the object remains in a known fixed position on the sensor.

Threshold -- a value or decision boundary where all values below are set to a certain value all

values above are set to a different value.

Time Constant -- a time value associated with each element or group of elements that

xiv

mlllnmmnn mnn l mum u n m unuu

represents the processing time of the element. Analogous to a gate delay in a digital system.

Transfer Function -- actual input-output relationship in an element. Relates the value of the
activation function to the output.

Translation Invariance -- a property of a system where the position of the object or information
does not effect the operation of the system.

Translation, Rotation, and Scaling Invariant -- a mapping or ANN that recognizes patterns of
the same form irrespective of their position, orientation and size.

Uniform-uniform Noise -- noise of uniform amplitude distributed uniformly.

Unsupervised -- learning in which the network modifies its weights by itself, without any super-
vision. The network learns correlations between items of information.

View Angle -- the angle, measured from the optical axis, between the vehicle's path and that of
the target.

Visual Flight Control -- using visual information to stabilize a vehicle, control its path, and
navigate to a specified goal.

Weakly supervised -- learning where the network updates its weights according to a grade of its
performance. This is also called graded learning.

Weight -- the scaling factor of a connection to an element. In biological systems, this is called a
synapse strength. The weights of a neural system constitute the stored information.

xv

LIST OF SYMBOLS

SYMBOL DEFINITION

Ak Intensity mass in the Centroid Tracker algorithm

AT Intensity mass threshold in the Centroid Tracker algorithm

A,, Detector area for the Continuity Filter

aj Activation function of a neural unit in layer j

al(k,v,j) A weight for layer 1, position v, connecting planes k and j

a, acceleration of ICBM

a, acceleration vector of ICBM

akew acceleration vector of KEW

arel relative acceleration vector of ICBM w.r.t. KEW

a(x) spatial smoothing function, x axis

ai variable weight for the connectable area input

A angular position of ICBM as viewed from sensor

AoA angle of attack of the KEW towards the ICBM

aT Target acceleration in target motion analysis

Al weight connectable area of a U. celi in layer I

ANN artificial neural network

ATR automatic target recognition system

Av,Av gain of an amplifier

A, B, C' Hopfield network constants

A-AND Analog-AND function in the Continuity Filter theory

ALU Arithmetic-logic unit

AP AND-Pipe

B(k,) Power spectral density of the background

BPN Back propagation network

BSTS Boost surveillance and tracking system

bl(j) B weight in layer I of plane j

C one-dimensional correlation function

xv!

Ci capacitance of node i

c1 -1 (v) c weight for layer 1-1, position v

CF Continuity Filter

CPB Current-Position Buffer

CT Centroid Tracker

CU Control Unit

di(v) d weight for layer 1, position v

dL,.x(v) maximum d weight value for a connectable area

D maximum horizontal displacement 0

D1 D weight connectable area of a Uc cell in layer I

D initial distance betwween KEW and ICBM

D Longer dimension of target in imaging analysis

Dk(s) Time difference of image intensity in differencing methods

d(r) Detector function for the Continuity Filter

dk Decision function in centroid computation; desired output signal of
the back propagation network

Emin minimum energy for a Hopfield network

E(x,y,t) intensity at point (x,y) and time t

ei,j intensity of pixel at location ij

ei.j,.k k-direction neighborg of ej

Faverage excitatory value

em,(k, n) excitatory value of a cell in plane k, position n

e max (k, n) maximum possible excitatory value of a cell

Ealfa partial derivaive of E with respect to alfa

EFAR Expected false alarm rate

F(O) fourier transform evaluated at 0

f(x,y,t) an input image at time t

fj(aj) Transfer function of a neural unit in layer j

FAR False alarm rate

FIFO First-in-first-out

FOV Field of view •

GSNR Signal-to-noise ratio gain

xv11

H(k, (o) Transfer function of optimum filter

Ho maximum value of spatial filter

h (n) inhibitory value of a cell at position n

HT Hough transform

HTS Hough transform system

I Image coordinate system in target motion analysis

li Image intensity in image formation

Ik(S) Image intensity at frame k in differencing methods

I, Spectral intensity of a point source in image formation

I electric current

Il inputh current to i'h Hopfield node

L inputh current to ith Hopfield node

'o current leaving Hopfield node through resistor ro

Ic current leaving Hopfield node through capacitor

I0 current leaving amplifier of Hopfield node

*pea peak current into a Hopfield network

Ima,(min) minimum current into Hopfield network to turn node on

I.Wat(max) maximum current into Hopfield net which leaves node off

I(x,y,t) 3-D intensity function in rectangular format

I (r, 0,t) 3-D intensity function in polar form

I(u,v,t) 3-D intensity function in the computation plane

tk(s) Shifted image intensity at frame k in differencing methods

ICBM Inter-continental ballistic missile

IFOV Instantaneous field of view

IVSTS Integrated Vision System for a Target Seeker

Kc, number of U, planes in layer 1

K,1 number of U, planes in layer 1

KEW Kinetic energy weapon

LSM log-spiral mapping

Le second order oriented smooothing function

MT total intensity mass of an object

xvil

MO zero order moment

m I first order moment

MA: mean location of an object on k axis

mij in tensity of image pixel (ij)

MF Mask Frame

MPP Massively parallel processor

MR Mask Register

MTI Moving target indication

MTT Multiple target tracking

L Initial target distance from the sensor in imaging analysis

N number of pixels in a row or column of a square sensor

Ns Number of frames in an image sequence

n(r, t) Three-dimensional noise signal 0

n row and column coordinates of a neocognitron cell within a cell plane

oi Output signal of a neural unit in layer i

p(v) testing pattern for P(v)

P(v) training pattern for a neocognitron

PO total object power

PC Probability of error

PC lb Upper bound of probability of error

PC I, Probability of error for signal

PC II Probability of error for noise

P, North pole in vision system geometry

Pn Probability of a binomial noise distribution

Ps South pole in vision system geometry

Ps Probability of a binomial signal distribution

Pi Image point in the image coordinate system in image formation

p,(r) Average power of noise n(r, t)

p,(r) Average power of signal s(r, t)

p Homogeneous coordinates of the image point p in image formation

PDP Parallel distributed processing 0

il Im

PE Processing element

PTDS Pipeline Target Detection System

q1 reinforcement scale factor for layer 1

r radius, in units of length

(R) set containing discrete values of the intensity at t I

Rij Hopfield resistive connection between nodes i and j

r inhibition constant for layer 1

rim=x maximum possible inhibition constant which allows recognition

Rn(o) Autocorrelation function of noise distribution

rT Target location in image plane

r0 Initial target location in image plane

RMTI Recursive moving-target-indication

S * (k ,o) Complex conjugate of 3D signal Fourier transform

s measure of directional angle between two neocognitro vectors

s(r, t) Three-dimensional target signal

sd(r, t) Three-dimensional filtered target signal

SIMD Single instruction stream multiple data stream

SNR Signal-to-noise ratio

(SNR)O Signal-to-noise ratio of the original image signal

(SNR)d Signal-to-noise ratio of the filtered image signal

(SNR)p Signal-to-noise ratio in a processing state P

SPTDT Single-pixel target detection and tracking

T Intensity threshold

TOj Hopfield weight connection between nodes i and j

t I time corresponding to the first frame

t 2 time corresponding to the scond frame

{T) set containing discrete values of intensity at tsub 2

TOj transconductance from neuron i to neuron j

tk Training pattern

TAS Target association system

TDT Target detection and tracking

TFB Target-Frame Buffer

| |•

TP Test-Pipe

TWC Temporal window column

u x component of velocity

Ui sum of currents at input node i (Hopfield)

a unit vector in 3D space (x,y,t)

Ucl(k, n) output of excitatory Uc cell, layer 1. plane k, position n

U, 19k, n) output of excitatory Us cell, layer 1, plane k, position n

Uo output of cells in input layer of neocognitron

ui input voltage of ith Hopfield node S

ui(min) minimum possible input voltage for Hopfield node

ui(max) maximum possible input volatge for Hopfield node

UH highest input voltage for linear op amp operation

UL lowest input voltage for linear op amp operation

v velocity vector

Vi Velocity of inter-continental ballistic missile

vK Velocity of kinetic energy weapon

vr Radial component of relative velocity in target motion analysis

Vs Sensor velocity in target motion analysis

VT Target velocity in target motion analysis

vt Tangential component of relative target velocity

vw Object point in the world coordinate system in image formation

V homogeneous coordinates of an object point

V state of a neuron in LCT Hopfield network

VH output voltage for a logical 1, Hopfield net

VL output voltage for a logical zero, Hopfield net

Vi output voltage of ith Hopfield node

Vmax maximum output voltage of Hopfield node 0

Vt threshold voltage for operational amplifier

VX operational amplifier input voltage

v y component of velocity

W World coordinate system in target motion analysis S

w(m, n) Two-dimensional window function

xxi

II II II •

wji Connection weight between layers i and j of a feed-forward network

Xf mean location of f(x)

At X coordinate of the intensity centroid in the Centroid Tracker

PA; Y coordinate of the intensity centroid in the Centroid Tracker

aX Step of the momentum term in weight adaptation

a degree of saturation of the Psi function

Ti normalization value of the spatial filter

Th centroid location on i axis

*rj Centroid location on j axis

AX overall horizontal estimate, LCT

AY overall vertical estimate, LCT

Ax true horizontal displacement

Ay true vertical displacement

A individual horizontal estimate

A LCT individual vertical estimate

* AB Subpixel shift estimate in differencing methods

Ar Spatial translation of target signal in image plane

8) Two-dimensional unit sample function

8j Error signal at a neural unit in layer j

*i Error vector at the output layer

8hi Error vector at the hidden layer

71 Learning rate in weight adaptation
F3D space of TWC, size D xw2 at xk,yk

V2 Laplacian operator

K scaling parameter

x Wavelength in image formation

*co Solid angle originated from the image plane in image formation

cOs Solid angle originated from a point source in image formation

(D Sensor's total field of view in imaging analysis

(,,(co) Power spectral density of random noise

* Solid angle subtended by the longer dimension of the target

xxii

0 ~

0

OA() Spectral radiant flux emitted by the lens in image formation

0s(k) Spectral radiant flux received by the lens in image formation 0

O(x) Fukushima's output function for U, cells

TI(x) Fukushima's output function for Uc

Its a priori probability of signal

7t, a priori probability of noise

TReceptive-field pixel set in BPN-implemented PE design

G standard deviation

aon standard deviation on n estimates 0

Ot temporal standard deviation

YXY yspatial standard deviation

Internal bias of a neural unit in layer j

xxiii

! I I nn m0

SECTION I

INTRODUCTION

This report summarizes the results of research on An Integrated Vision System for a Target
Seeker, (IVS). Detailed explanations of methods, results, simulations, software, etc. can be
found in other final reports delivered (A008, A009, AOOA, AOOB).

Figures provided by WL/MNSI on system geometry and requirements are: Field of view of
from 100 to 300 g rad/sec of solid angle. the initial distance between weapon and target is of the
order of 100 Km with a closing velocity of 6 to 10 Km/hr. The target dimensions can be
between Im wide-2m long and 3m wide-16m long. Simple geometric considerations show that
the above figures are compatible with a feasible system.

It is required that the IVS performs in real time and, from the above figures, it is clear that
the time from ICBM launching to impact with the intercepting weapon will be just a few
seconds.

In view of the requirement for real time operation, it was decided that as many parts of the
system as possible would be designed using artificial neural networks (ANNs). ANN research
has experienced a big increase in activity in the last few years. Among the reasons for this, we
can mention the ability of ANNs to recognize patterns even under severe degradation due to
noise and other artifacts.

In spite of all the research activity on ANNs, progress on their analog VLSI implementation
has been very slow. Among the reasons for this are: huge numbers of weights (resistors) and
connections (and hence a serious routing problem), heat dissipation, etc. Several small scale
ANNs have been made commercially available recently, [1,2]. The capabilities of these net-
works, however, are very limited, due to the small number of processing elements (neurons) and
weights they contain. In the course of our research we have developed a Hopfield-Tank ANN
for centroid determination and a modified higher order NN (MHONN) for pattern recognition. It
is shown in the Subsystem Design Report-Algorithms that the first is implementable in analog
VLSI, and the second in hybrid VLSI form for a sensor resolution of 128x128. We consider this
to be an important contribution.

The task to be performed by the system consists of:

a) acquiring the image when the target (ICBM) is launched. At this point, due to the
booster and, mainly, to the plume, the target has big dimensions and can be termed mu/-
tipixel.

b) detecting target motion within the image

c) identifying the target (i.e., pattern recognition applied to target identification).

d) tracking the target (keeping it centered on the optical axis).

These steps refer to the multipixel case. After the post-booster stage, the target will
become very small, of the order of one pixel, and we will then have to resort to identifying
and tracking a single-pixel target. So, steps (c) and (d) will have to be "repeated" for the
single-pixel case. When the weapon gets close to the target, the target image will, again,
become mul'pixel. A simplified block diagram of the multipixel system is shown in Fig. 1. 1.

Each one of the six multipixel blocks will be described in more detail in Section II and fol-
lowing.

A summary of the operation of the multipixel system is as follows:
a) The image is acquired by a 128x128 infrared rectangular tesselation sensor. Block I,

Motion and Edge Detection detects objects experiencing motion, determines their
edges, and binarizes the resulting edge image. It must be noted that the original grey
level image will be needed in block III.

b) Next, in Block II, Segmentation, objects are segmented, i.e., they are separated into
windows, one per moving object. the segmentation algorithm takes into account the
possibility of parts of an object falling within another object's window, the partially
included object is deleted from the window and only a complete object remains in each
window. Segmentation uses standard image processing techniques.

Notice in Fig. 1.1 that once the objects are segmented, all further processing can be
done for all the windows in parallel.

c) Block Ill, Centroid Calculator, is used to determine the centroid of the object in each
window. In order to calculate the centroid coordinates in terms of its own window
coordinates, an analog parallel network (APN) was designed. The APN performs a
spatial filtering to generate a peak value corresponding to the centroid location. A
Hopfield network then determines the peak location of the centroid. Both operations,
filtering and peak location, are separable to their x (row) and y (column) components.
Consequently, the complete centroid calculation can be done with two one-dimensional
networks.
The target is identified by subsystem V, see (e) below. The target is identified, only the
target window needs to be considered, and a continuous update of the centroid location
is used for tracking. It must be noted that, although the window coordinates provided
by the previous block are used for centroid calculation, the centroid is determined in
terms of the grey level object, since for the objects of interest there is a substantial
intensity variation from the brightest point to the darkest. If the binary image would be
used, the centroid would not take this fact into account and subsequent steps would not
produce correct results.

d) Each window is mapped to a log-spiral grid in Block IV, Log-spiral-map (LSM). This
mapping can be performed in software, with special purpose digital circuitry, or with an
ANN. A conformal transformation is used to map the log-spiral grid to a computation
plane in which rotations on the optical axis and scalings are transformed to displace-
ments along the two coordinate axes, respectively. This property of the transformation
is used for two purposes: (i) to be able to recognize an object in different scales and
orientations by means of a MHONN, Block V, and (ii) to be able to determine object
rotation and orientation using the line correlator tracker (LCT) of Block VI in the com-
putation plane of the [SM.

e) The next step in the process is to identify the window(s) that contains a valid target.
This is done by Block V, MHONN. This is a second order MHONN which is able to
recognize images that are translated in the plane. Since the LSM transforms scaling and
rotations into translations, and the unmapped image is always centered on the centroid,

2

0E

0 C,

'-4

-0-

'X IU

co *4

al C4
= xJ

LUx

02

0g

the MHONN, working with images in the computation plane of the LSM, is able to
recognize objects of different sizes and orientations.

f) Block VI, LCTT, is used to determine object scaling and rotation by computing transla-
tions in the LSM computation plane. This needs to be done only for the valid targ.
window. As its name indicates, the LCTr is based on linear correlation, instead of the
usual 2D correlation. An ANN Hopfield network has been designed for its implementa-
tion.
Once the object of interest has been identified, as mentioned above, it is tracked by
computing its centroid from frame to frame. Its size and orientation are determined by
means of the LCTT.
For the single pixel situation, the only information available is targei continuitv and tar-

get intensity invariance for short time intervals (the sensor is infrared and temperature does
not change instantaneously).

In view of the limited information available, a nov el fii.er, the Pipeline Target Detec-
tion System (PTDS) was developed to filter out noise and other disturbances and retain target
pixels, which in a time sequence of several Iranr, : reproduce the target trajectory. the con-
tinuity filter consists of two main parts, the and pipe and the test pipe. In the and pipe, 3x3
masks of the image are ANDed, anaiogically with a mask of ones to detect presence or
absence of candidate pixels. 'i hu test pipe than determines whether the candidate pixel (if it
exists) can be a trajectory pixel, based on its cht nge in spatial position from frame to frame.
A further improvement of this, which produces better results, is the use of a backpropagation
NN to track candidate pixels. All the parts of this subsystem can be implemented by means
of massive parallel digital processc.-.

As mentioned above the output of the PTDS is an image containing target trajectories.
At this point, the location of the target(s) at frame "n" in the sequence is not known. The
coordinates cf each of the last frame's pixels is known. Some of these pixel may correspond
to val'i trajectories and some to noise. By means of a Hough-transform implemented in
ANNs, it is then determined which straight line segments (valid trajectories) are present in
the image, and for these, the location of the last frame pixel gives target position. This net-
work is implementable in analog VLSI.

4

0

SECTION II

MOTION/EDGE DETECTION

1. INTRODUCTION
Currently used algorithms for motion detection make some assumptions on the

sequence of images used for this purpose which are not exactly true in most cases. The
most common of these assumptions is the constancy of scene illumination, by which it is
meant that any changes in intensity at a given image point must be due to object motion.
This assumption is used in intensity-based gradient schemes. In feature-based gradient
schemes, on the other hand, the aperture problem presents a serious challenge to the
designer. Shortly stated, the aperture problem means that only the component of velocity
perpendicular to an edge can be uniquely determined.

We have developed an algorithm and propose to use an original architecture imple-
mentable in real time, that determines instantaneous velocity of all objects present in the
image sequence and detects their edges, producing as a result a binarized edge image and
an indication on the direction of motion of each object. No simplifying assumptions are
made about the image sequence, and the aperture problem is solved.

In what follows we will refer to "three dimensions" meaning dimensions x,y and t,
that is, a time sequence of two dimensional images.

2. GENERAL SPECIFICATIONS
The following general specifications are satisfied by the motion-edge detection sys-

tem:

a) A velocity field is'estimated for the sequence. This involves solution of the aperture
problem.

b) Velocity vectors accurately represent optical flow within small volumes dV =
dxdydt. These vectors are calculated only at "prominent feature points," i.e., points
at which an important image feature, such as intensity, experiences a significant
change.

c) The algorithms is free of strong restrictions or assumptions on the scene contents or
image formation process.

d) The algorithms is applicable to a wide variety of natural imagery and has high noise
immunity.

e) The algorithms have a simple structure and are implementable in real time.

3. THE MODIFIED SPATIO-TEMPORAL ALGORITHM

Based on the above general specifications, a modified spatio-temporal filter was
designed and tested by means of software simulations . The filter is "modified" in the
sense that it does not use the assumption of constant intensity over time. In addition the
aperture problem that arises in other schemes such as the feature-based gradient schemes,
has been solved.

I5

The basic processes involved in the algorithm are spatio-temporal filtering and velo-
city estimation. The first is achieved by means of oriented spatio-temporal filters. The 0
velocities are then estimated by the gradient approach applied to the filtered image
sequence. This approach smoothes the images, thus radically reducing the effect of noise
and, in addition, direct computation of derivatives (i.e., gradients) is avoided, thus elim-
inating noise enhancement. This approach also permits motion detection of low contrast
objects. Edge features, i.e., sharp changes in intensity, are basic features used by the
algorithm. The zero crossing of second directional derivative is used to detect edge
features because it is the most reliable method [1,2]. If the derivative is taken in different
directions at a point, the zero crossing occurs at the same (edge) point for all the direc-
tions. Second zero crossing directional derivatives require gradient information in addi-
tion to second directional derivatives.

a. Algorithm Design
The image sequence f(x,y,t) is convoluted with a smoothing spatio-temporal func-

tion G(x,y,t),

T (x,y, t) =f (x,y, t)*G (x,y, t) (II. 1)

The second directional derivatives of T(x,y,t) at edge points with respect to a spatial vec-
tor si that may have any direction from 0 to 2nt when computed for a spatio-temporal
sequence at (x,y,t) and (x+dx, y+dy, t+dt) and equated at the two points in the sequence,
is the basis for edge detection. Further processing provides velocity information at the
edges solving, in the process, the aperture problem.

The algorithm is divided in two main parts: edge detection and motion (velocity)
determination. The second partial derivative of T with respect to a directional vector
s = I s I (cos Oi + sin 0j), where 0 can take on any value between zero and 27C, is com-
puted at an edge point at times t and t+dt. Its value should be the same at both instants
[3]. From the derivative rule for convolution, 0

a2T(x,y,t)
K (x,y,t) - t3s2 (11.2)

=f (x,y,t)* Le

The vector s can have any direction from zero to 27c and is related to the x and y axes
directions by the directional cosine and sine, respectively. Thus

Le o - 2G 32 cos2 0 + 2(11G.3)
LO 2 - a 2 0 a cos 0 sin 0 + 2 sin20 (11.3)

Although different directions of the second derivative can be taken at a point, all their
zero crossings occur at the same edge point. Thus, the zero values of equation (11.2) will
correspond to edge points. Expanding K(x,y,t) by means of a Taylor series,

aK aK aK=O
"x u + v.4) a

6

where u and v are the x and y components of velocity at point (x,y,t), respectively.

Two motion constraint equations are needed to obtain a solution for u and v, Fig. 11. 1. In
practice we use

* x aL + iv+ f =0; 05<<2n

where

JLo - 20 +2 0 cosO G sin20 (1I.6)

x2aj -y 2yaj

with j= x,y,t.

In (11.5) 0 is given two or more convenient values (0,450, 90)...). The solution for u an v
is obtained from (1.5), after computation of the bracketed terms using the LSE method
and solving by a pseudo inverse matrix technique.

The spatio-temporal smoothing function G(x,y,t) is chosen as

G (x,y,t) = g (x, ayx)g(y, ay)g(t, at)

1 2 1 e 22 1 2

ee
j (.7)

The values of ut, aix, ay determine the sensitivity to velocity. The maximum response is
obtained for (with arx = ay = ay),

CY
Vopt - 2yt (11.8)

A range of velocities has to be detected, thus it is be necessary to have a multi-channel
system in which the a and 0 parameters are selected for optimal detection. A block
diagram of the system is given in Fig. 11.2.

b. Number of Filtering Operations

In order to implement the edge/motion detection spatio-temporal filter, the opera-
tions described by-equations (11.1) to (11.6) must be performed. A total of twelve filtering
operations per channel, i.e. convolutions of G and its partial derivatives with the image
function, must be implemented.

For the range of velocities of our particular application, a%=1 and arx=aYy have
values of 1, 2, 3, and 4. These were determined heuristically.

Convolution is performed, of course, in a discrete fashion, i.e., as a discrete summa-
tion of weighted signals intensities over the kernel.

b.. Temporal function approximation

*Convolution requires, in general, much more processing time than the solution of
(11.5) for the velocities u and v. Considering only the filtering (or convolution) process,
the total number of operations required is equal to the product of the number of filters

7

v0

Vx1.V+aKi .o
constW0ra in I

/ solution point

Figure 11.1 A unique solution for (uv) can be obtained from two motion
constraint equations

INPUT IMAGE SEQUENCES

CONVOLVED BY CONVOLVED UT CONVOLVED BY
6, O4UEdTED % OezRrt 46

SPA10-TPORAL SPA-T. L4 SPAnTIowTeRAL
FILTERS FILTERS .. FILTERS

SPATIAL & SIPATIAL & SIPATAL &
TOSAL"I TEPRWOUL TOMMOALGRADIRIS GUADUNT's GRADET

CNTArrCONrIRAWf CONS2AT

IOP THlE ARMV COHSVEAftff WAMD

Figure 11.2 Block diagram of the motion/edge detetion filter

(twelve) times the sum of the kernel size for each of the four channels (3x nxn) times N2

(where N is the image resolution.) For N=128 this is equal to 1.2 billion summations and
multiplications , an impossible figure to deal with in real time.

The filtering operations are separable into three ID filters. In that case, the spatial
filter sizes are 9, 17, 25 and 33, with temporal filter size of three. Two temporal filter
operations are required, and 19 spatial operations are required per channel. Thus, the
number of computations required is

N.C. = (2x3+19x(9+17+25+33)xN2 = 26 106

which, although a considerable reduction, is still too large for digital processor computa-
tion. If digital signal processing chips are used and about one million operations per
second are possible, more than 26 seconds would be required for the filtering operations
only.

b.2. Computational complexity reduction for digital implementation
A tree showing the required fitering operations for the 1D implementation is shown

in Fig. 11.3. The notation is as follows: jn means the nth partial derivative of G with
respect to j ; thus xl is dG/dx. The figure shows that the filter requires 2 temporal filter-
ing operations and 19 spatial filtering operations. These operations must be performed
for each of the four channels. A property of convolution of Gaussians is that if two Gaus-
sians are convoluted, the results is also a Gaussian with a larger standard deviation than
either. Thus, a cascade of Gaussians can be used as a hierarchical filter on the input
image. A variation of this idea was developed in [4] and is applied here. The method is
called "Hierarchical Discrete Correlation" (HDC). Recall that in addition of filtering
with Gaussian of different a, it is necessary to filter the image with 1st, 2nd and 3rd par-
tial derivatives of G. We have developed a technique to combine Gaussians to form the
1 st, 2nd and 3rd derivatives. In addition, convolution is distributive, i.e., (f 1 + f2) * F =
fl*F + f2*F, so Gaussian smoothed images can be combined to approximate desired
filtering functions. The method used to approximate the first derivative is illustrated in
Fig. II.4. Similar techniques are used to obtain the second and third derivatives. A third
approximation useful in reducing computation uses subsampling, i.e., calculating the
filtered image at less pixel locations than the original image resolution.

Since high frequency components are filtered out by the Gaussian filtering opera-
tion, the highest frequency component of the filtered image is lower. Thus, the filtered
image does not need to be sampled as finely as the original image.

4. APPLICATION OF SIMPLIFYING TECHNIQUES TO THE ALGORITHM

The first technique to be applied is the formation of a set of Gaussian smoothed
images using HDC. Figure 11.5 illustrates this method. Two hierarchies are used to
efficiently generate a set of Gaussian smoothed images in which the standard deviation
varies by the square root of two.

The next step is to combine linearly these Gaussian smoothed images to form the
desired first, second, and third derivative of Gaussian filtered images. This is a heuristic
approximation process that produces good results.

9

y2

-Z~yo xx0 y3O

\ - x2 xl-- yl

Figure I.3 Filter flow structure

0 ----- o-0 ------ - ----

tS 1 I

0 0

Gaussian, G(x) - e- 2 1I Derivative of Gaussian

Graphs of Gaussian and Derivative of Gaussian Functions

-o0 00 0

Figure 11.4 AppMoximation of Gaussian first derivative

10 6

0 3

UU

I | i ||0

original image edge image

16 32 48 64 0
SI I I

0 0

16-

32-

48-

64-

velocity diagram

Figure 11.6 Simulation of motion detection algorithm: synthetic image

12

orizina !mnalze -Cg :rna%7

XNM

e; oc yd arl

The computational complexity of the implementation of the Motion/Edge Detection
algorithm using the above described filtering techniques is now examined. As mentioned 0
above, from Fig. 11.3 it is apparent that two temporal filtering operations are necessary (tO
and t1). The required spatial filtering can be achieved by forming nine hierarchies, five
associated with the tO tree structure and four associated with the tl tree structure. Addi-
tionally, 13 combinations are required (associated with all the xl's, x2's, x3's, yl's, y2's,
and y3's shown in Fig. 11.3.

The sum of the sizes of the filters used in each hierarchy is 41 (7 + 7 + 7 + 5 + 5 + 5
+ 5). Each combination requires two operations and with four channels the computations
associated with the combinations are scaled by 8 N 2. The resulting computational com-
plexity is given by:

9 Hierarchies 41 N 2
- 369 N2

13 Combinations - 8 "N2 = 104 N2

2Temporal - 3-N 2 = 6N 2

This totals to 479 N2 multiplications and additions required to perform the filtering
required by the algorithm with four channels. When subsampling is also used this amount
can be reduced to approximately 250 N2 . The complexity calculated earlier in which the
filter was implemented using conventional techniques was found to be 1602 N 2 . Thus,
utilization of the three filtering techniques described above results in a reduction in com-
putational complexity of over 84 percent.

5. SIMULATIONS

Extensive simulations have been performed with the motion/edge detection algo-
rithms using both synthetic and real images. In the reports Software tests-Description and
Software test-Simulations, simulations are discuss _d in great detail.

Figures 11.6 and 11.7 show the results of simulations with synthetic and real images,
respectively. It can be seen that these simulations produce good results. The value of a
plays an important role in obtaining good results and that is why it is extremely important
to have a set of values of a that corresponds to the range of velocities that can be
expected in our application.

14

SECTION III

IMAGE SEGMENTATION

1. INTRODUCTION
This section contains a brief review of the segmentation subsystem and the algorithm

created to perform the segmentation.
The input to this subsystem is the output of the motion detection subsystem, i.e. a binary

edge image with a velocity associated with each output edge pixel. Its output consists in a set of
segmented sub-images about each object in the input image. Ideally, there is just one object con-
tained in each sub-image (or "window").

2. SEGMENTATION ALGORITHM
The basic method used by the segmentation algorithm can be summarized by the following

five steps :
v 1. Cycle through pixels across the rows and down the columns.

2. Classify each pixel as belonging to an object or not.

3. Assume "adjacent" pixels are part of the same object if:
a. Both pixels are edge pixels.
b. Both pixels have associated with them velocities which

are similar.
4. Merge different objects as necessary.

5. Update object boundaries as necessary.
In step three, the meaning of "adjacent" is flexible. Adjacent pixels could be taken to be

pixels which are immediate neighbors of each other, or it could allow for single or multiple pixel
gaps. The particular meaning of adjacent is set by a parameter in the segmentation algorithm.

Once all the pixels have been examined and classified appropriately, indices which define a
rectangular window will have been found for each object present in the input image.

a. Simulations
Figures III.Ia and b show frames one and three of an image sequence obtained with a cam-

era mounted on the end effector of a robotic arm. The arm was moving and the end effector was
rotating, a very involved situation. Figure II.lc shows the edge image obtained from the
motion/edge detection algorithm, and Fig. I1. .d the velocity diagram from the same algorithm.
Figure 111.2 shows objects segmented by the segmentation algorithm using the information from
Figs. [TIc and d. It can be observed that the results are very satisfactory even in the complicated
case. Rotating objects present potential problems because the velocities at different pixels is not
the same, see Sect.3.a below.

15

I S

0

g0

Original Image: Frame 1 Original Image: Frame 3

0 3060 9012

0

Edge Image Velocity Diagram

Figure 11M. Results for robot sequence, image size : 121x121

16

subimage I subirnage 2

subunage 3 subunage 4

subimage 5 subitnage 6

Figure 111.2 Segmented subimages from the images of Fig.I1I.1

17

3. PROBLEMS

With the basic understanding of the segmentation algorithm described in Section 2 in mind,
two problems will now be addressed. The first deals with rotating objects for which different
pixels have different velocities. The second refers to windows that contain a main object and
parts of other objects.

a. Segmentation Problems

First the situation of rotating objects will be examined. Figure 111.3 illustrates this situation.
Shown is an image of a rectangle rotating counterclockwise about its center. The numbers within
the grid refer to the magnitude of the velocity at that location. The arrows indicate the direction
of the velocity. As can be observed all of the pixels which make up the rectangle have associated S

/101/8 /6 5 4 5 6 8\ 1
19 91

8 8f

\9 9/
10 8 6 5 4 5 6 8 10/

Figure 111.3 A rotating rectangle

18

with them velocities which are different. For example, pixels located on opposite sides of the
rectangle. have velocities which are in directly opposite directions. However,; pixels which are
near one another have similar velocities. Since the segmentation algorithm only requires that
adjacent pixels have similar velocities, rotating objects do not cause the algorithm any
difficulties. Each pixel which makes up t*:; rectangle illustrated in Fig. 111.3 would be classified
as being part of the same object.

The situation shown in Fig. 111.3 is not unique, indeed any situation in which an object is
rotating will share the same characteristic that adjacent pixels which make up the object will
possess similar velocities. This will be true whether the object is rotating about its center or
about any other point within the image. Thus, the algorithm as presented before did not have to
be modified to handle rotating objects.

The algorithm was tested using synthetic data to mimic a rotating object and was found to
work successfully, as expected. Later in this report results will be shown for situations in which
a sequence of images containing a rotating object is input to the Spatio-Temporal Filtering sub-
system and the output of this subsystem is subsequently fed to the segmentation subsystem.

The second question concerned situations in which nearby objects are present in an image
such that rectangular windows which contain the objects overlap. Figure 111.4 illustrates this
situation. Shown is an image in which a square and a triangle are positioned such that rectangu-
lar windows which contain each of these two objects overlap. The large diagram in figure four
represents the output of the segmentation algorithm once all the pixels have been examined. Pix-
els which have been found to be part of an object are given a value equal to the object number.
Thus, all of the pixels marked with a "1" have been classified as belonging to object "1", and all
of the pixels marked with a "2" have been classified as belonging to object "2".

Previously, the output of the segmentation algorithm consisted only of the row and column
indices which defined rectangular windows which contained each object found in the input
image. However, since it is desirable to only have one object in each segmentation window, and
since simply extracting a rectangular window of pixels about an object can sometimes lead to
situations in which more than one object is present in the window, the output of the segmenta-
tion algorithm had to be modified. The algorithm was modified as follows: an output edge image
is formed for each object found by creating an edge image the same size as the rectangular win-
dow which just contains the object, however, only those pixels within the rectangular window
which have a value equal to the object number are deemed to be edge pixels. All other pixels
will be assigned a value of zero. The edge pixels are assigned a value of 255. By forming the
edge image in this fashion one is assured of only having one object in each segmented edge
image.

The algorithm was tested using synthetic data to mimic situations in which objects are
nearby and was found to work as desired.

19

1 1 1 1 1 1 1 1 1 1

1 1
1 1

1 1

1 1

1 1

- 1 2222222 •

1 1 2 2

11 2 2

1 2 2

2 2 0

2 L
2222222

........ 7 ..

Figure 4 Objects in two overlapping windows

200

SECTION IV

CENTROID DETERMINATION

1. INTRODUCTION
The binary edge image output of the motion/edge detection block is the input to the seg-

mentation algorithm which outputs windows containing the binary edge image of each one of the
objects present in the image. The centroid-determinator obtains the centroid of the objects in
each window, with respect to window coordinates and, by extension, to image coordinates.
Since centroid location (with respect to the object) is invariant to object size and to rotation on
the image plain, continued centroid calculation provides a reliable way of tracking the target.

2. CENTROID CALCULATION
In the physical world, the centroid of an object is the center of mass of the object. For the

context of image processing, the image can be thought of as a thin, two-dimensional object,
where the mass of a point is proportional to the image intensity at the point. Since the centroid

0 is constant for any object according to some object frame of reference, finding the centroid of the
object allows elimination of any translation. As a result, the object can be normalized with
respect to translation. Calculating the log-spiral mapping (LSM) around the centroid then pro-
vides a method of reducing scalings and rotations to cyclic shifts, which can be handled by the
recognition network.

* An additional advantage of the centroid is its use for target tracking. Since the centroid
location is related to the target location, keeping track of the centroid location for several images
will provide information on the target's velocity (both speed and direction).

a.Centroid Overview
0 The centroid location, (ITj) of an object in an (ij) coordinate system is calculated as:

T1i = - I Y mij i (IV.l)
=1l

* 1j = ~-Z ., .mijjT i=1 j=

N N

where MT = total intensity mass = mij
i=1 j=1

mij = intensity of image pixel (i,j)

The image intensities of Eq.IV.I correspond to the gray level image intensities of the mis-
sile plumes in Fig. IV. I for the target seeker case. Although edge images are necessary for the
LSM, they do not provide adequate information for centroid calculation based upon image area.
As a result, the area intensities must be used to calculate the centroid locations.

21

A0

a. 0 Degree Missile Plume b. 15 Degree Missile Plume c. 90 Degree Missile Plume

Figure IV.1. Missile Plume Images

For the ICBM target seeker application, gray level images provide better centroid results
than thresholded binary images. The centroid of the gray level image of Fig. IV.2a is closer to
the front of the missile plume (left side of figure) than the centroid of the binary image of Fig.
IV.2b. Since the target seeker goal is a collision very near the hottest image point, a centroid
weighted by image intensity will locate the centroid closer to the desired target point than a
binary valued image. It is also hypothesized that the coolest plume gasses will oscillate in tem-
perature near the binary threshold value, and that the resulting binary centroid will change fre-
quently as a function of time, but inadequate data is available to test this hypothesis.

•0

a. Gray Level Plume Image b. Binary Plume Image

Figure IV.2. Centroids for Gray Level and Binary Images (90 Degree Plume)

22

In order to calculate the centroid coordinates, in terms of its window (ij) coordinates or in
terms of its image (ij) coordinates, an Analog Parallel Network (APN) had to be designed. The
APN performs a spatial filtering to generate a peak value corresponding to the centroid location.
A Hopfield network then determines the peak location. The centroid calculation approach is
shown in Fig. IV.3. The network shown would find only the column location of the centroid.
Finding the row location would require an equivalent network of summers, spatial filter, and
Hopfield network.

The initial row of summing amplifiers in Fig. IV.3 is used to sum the pixel values in each
column. The centroid of the resulting sum corresponds to the column location of the two-
dimensional centroid. An equivalent process is performed to calculate the row location of the
two-dimensional centroid. Separation of the two-dimensional problem into two one-dimensional
problems is allowed due to the axes being orthogonal.

If the maximum sum corresponded to the centroid location, then the Hopfield net could be
used immediately after the summers to find the peak/centroid location. The centroid and peak
do not necessarily occur at the same location, though, so the spatial filter is needed to create a
result whose peak location corresponds to the centroid location. This result is then used as input
to a Hopfield network which is designed to have a logical "1" at the output which corresponds to
the peak input. The Hopfield result is then given to a demultiplexer (DEMUX) to determine the
centroid location in binary form.

3. SPATIAL FILTERING FOR PEAK DETERMINATION

Image Data

S um m ing A m ps Ceom

I",,,,. Location

Spatial Filter Hopfield Net for DEMUX
Peak Detection

Figure IV.3. Network to Find Column Location of'Centroid

2.3

0

Spatial filtering provides a novel approach to finding the centroid. A filter can be formed
which, when convolved with the initial data set, will create a result whose peak occurs at the
centroid of the data set. A useful property of convolution is that the centroid of a convolution
result is equal to the sum of the centroids of the functions being convolved:

f= centroid of f(x), where f (x) = data set

Let X-h = centroid of h(x), where h (x) = filter set •

2= centroid of z(x), where z (x) =f (x) * h (x)

Then , =if + Xh (IV.2)

If h(x) is symmetric about the origin, then this function will have its centroid at x = 0, and
Eq.IV.2 will reduce to:

xZ = xf, for.1h = 0 (IV.3)

Consider a filter function, h(x), of the form: 0
h(x) = A - g(x 2) (IV.4)

where A is some constant. The convolution result is given as:

z (x) = ff (t)[A - g [(x -a) 2]ldc (IV.5) 0

= ff(a)Ad - ff(t)g[(x-a) 2]dc

The first term corresponds to the area under the function, and is independent of translation. As a 0
result, the peak value of z(x) occurs for the value of x which minimizes the second term. There-
fore, the goal is to find a g (x2) which will minimize the second term. It can be shown that g (x2)
- ax2 + b will meet these requirements of minimizing the second term.

a.Spatial Filter Implementation •
The spatial filter was implemented to determine the row and column centroids separately.

The image pixel values are summed across the rows and down the columns as illustrated in Fig.
IV.3. This reduction of the centroid calculation of a two-dimensional function into the calcula-
tion of the centroids of two one-dimensional functions greatly simplifies the complexity of the
APN required to calculate the centroid.

Discrete space linear convolution consists of the following steps:
1. Reflecting the filter function, h(j), about the origin to create h(i-j) at i=O.
2. Finding the product of f(j)h(i-j) at each position j, where f(j) is the object density

function.
3. Summing the products to obtain the convolution result for the i location. 0
4. Repeating the process for each location i.

24

Since the filter function derived is symmetric, step one does not change the appearance of
the filter. For standard linear convolution, if f(i) is of extent N and h(i) is of extent M, then the
convolution result is of extent M+N-1. Eq.IV.3, though, shows that the centroid of the result
will equal the centroid of the object data set. Since the centroid of the object data set cannot be
located outside of its own range, the examination of the convolution result is reduced to the
extent of the object data set (N). The convolution is calculated as shown in Fig. IV.4.

The input voltages are supplied by the vertical lines and correspond to the data values, f(j).
The connections are conductances which correspond to the filter values, h(i-j). Each row of con-
nections corresponds to a single shift of the filter. The input voltages are multiplied by the con-
ductance values, and the currents are added by the summing amplifier to obtain a current or vol-
tage which represents the convolution result. An additional layer of inverting amplifiers is
required if positive valued voltages are required.

4. HOPFIELD NETWORK FOR PEAK DETECTION
Although the convolution network filters the data set so the peak value corresponds to the

centroid location, it does not explicitly indicate the location of the peak. Since the output is in
analog form, it cannot be directly used by a digital computer. A network is required which can
determine the peak of the many valued signals and indicate the peak location with binary values.

Data Set, f(j)

f(O) f(l) f(N-1)
Filter _

Shift

h(-j) h(0) h1)

R

_5 L Z(1)

*h(1-j) 1hl hO

Rl00
z(N-l)

h(N-1-j) h(N- 1) h(N-2) Vh(O)

Figure IV.4. Parallel Analog Convolution Network

25

The Hopfield network was selected to implement this peak detection process.

Hopfield proposed a neural network capable of solving optimization problems [1,2,3,4]. 0
The neural network layout is shown in Fig. IV.5. Note that the connections are shown in terms
of their resistive values. In the following analysis, the connections will also be expressed in
terms of their conductance values, Tj, where Tj = I / Rj. Hopfield's amplifiers were character-
ized as having sigmoidal transfer functions. In addition, it was assumed that they had infinite
input impedance.

The equations describing the network dynamics always lead to a convergence to stable
states, and the states are the local minima of the quantity:

INN N
E - T.,VVj - I (IV.6)

2 i= j=1 i=1

=El + E 2

The key to the use of a Hopfield network is to pose the problem to be solved in the form of
Eq.IV.6, so that the function is minimized by the desired solution. Hence, the peak detection
problem is solved by finding an assignment of input currents and conductances which will cause
the network to converge at the desired solution. The desired peak detection solution is specified
as follows:

1. The output is a logical I for the peak value.

2. Only one output is a logical 1. All others are logical O's.
3. A single network should detect the peaks for many data sets.

Assigning the input currents as functions of the data set will meet the third criterion. If the
currents are proportional to the data values, then the peak current will be some lt,", . If cri-
terions 1 and 2 are met, then the second term of the energy function, will be minimized if the
output voltage of the amplifier with the peak input current has a value of Vpeak = 1. •

The first term of the energy function must be used to guarantee criterion 2. Imagine the
term was of the form:

N N
E B II Vi Vj (PV.7)

2 i=lj=1

C (some constant), i*j
where B = i=j

E 1 has a minimum value of 0 if all Vi terms are 0 or if only one Vi term is 1. Comparing this to
the original energy function, it is seen that Tij = -B, or 0

0c (some constant), i*jTij =0, i=j (V8

Although a negative con 'ctance is difficult to fabricate, the equivalent effect can be obtained
by using a positive concz. tance and connecting it to the inverted output of an amplifier. As a 0
result, all of the Hopfie amplifiers are implemented with inverted outputs. Since a local
minimum for El does ,,:cur when all of the terms are 0, the input currents must be chosen

26

*R 1S R14 R13 R12 V
12 rR 25 rR 4 rR 3r R 2 V2

*R, 3 R R R2

4/^ L Xl R35 11(R34 Ix_ R32 r R31 ______

4 R45 R43 R42 R41 __

R54. R5 3 R 521 R51sV5

Figure IV.5. Hopfield Network

sufficiently large so the E2 term prevents the total energy function from converging to the local
minimum instead of the global minimum.

5.SIMULATION RESULTS

The centroid network was tested using the three missile plume images shown in Fig. IV. 1.
The results, listed in Table IV.1, demonstrate that the centroid network calculates the correct
object centroids. Convergence times for the Hopfield network were less than 100 pis. SPICE
simulations have also validated the program simulations for small image sizes and provide a
degree of confidence that a hardware implementation of the network would indeed provide the
correct centroid location.

As a result, centroid calculation provides a means of eliminating translation problems for
the log-spiral mapping. Filtering a segmented window can create a result whose peak value
occurs at the centroid of the input data set. This filtering has been shown theoretically and with
simulations to provide the correct centroid location consistently.

27

Table IV.1. Centroid Results for 64 x 64 Missile Plumes 0

Spatial Filterlflopfield Results Theoretical Location
Image Row Column Row Colum

0 Degree Plume 31 32 30.78 31.65
15 Degree Plume 31 35 30.78 34.78
90 Degree Plume 31 25 30.77 25.02

280

SECTION V

LOGARITHMIC SPIRAL IMAGING

1. INTRODUCTION
The log-spiral image is formed by combining and averaging rectangular image pixels. The

log-spiral image is formed about a certain point in the rectangular image called the centroid
(since this point is ideally the centroid of an object of interest within the rectangular image.) The
log-spiral image is passed on to the multi-pixel recognition part of the vision system, since a
log-spiral representation of an image facilitates the recognition of scaled and/or rotated objects.

The geometry describing a log-spiral tessellation of a digital image is more complex than
that for a rectangular image. A review of the geometry of log-spiral images will be given and a
constraint on the geometry will be derived which forms log-spiral pixels which have an aspect
ratio of nearly one (pixels with an approximately square shape.) This is a desirable characteristic
of digital images, since it yields an image with essentially uniform directional resolution. An
example of a log-spiral image of a simple object is also shown.

2. LOG-SPIRAL IMAGE DESCRIPTION
A log-spiral image (LSI) is an image whose pixel boundaries are determined by exponen-

tially spaced rings and equally spaced angular lines (radii) emanating from the center of the
representation. The principal advantage of a log-spiral image over a rectangular image is that a
log-spiral image, when mapped to a computation plane, results in invariance to scalings and
rotation due to its polar organization of the visual information.

Figure V. 1illustrates a log-spiral image tessellation. Four parameters determine the specific
geometry of any log-spiral image. These parameters are:

R 0in The radius of the inner ring.

R max: The radius of the outer ring.

ppr: The number of pixels per ring.

mg: The number of rings.

In Fig.V. 1, the number of pixels per ring is 8, and the number of rings is 4. One unfavorable
characteristic of a log-spiral image is that a "blind" spot exists in the center of the representation.
The effects of this "blind" spot can be minimized by choosing R in to be small compared to
Rmax. Selecting Rmin to be 1/10 ofRmax will result in a "blind" spot which covers just 1% of the
entire image. In many practical instances this effect will not be detrimental.

The equation which determines the radii of each ring in an LSI image based on the parame-
ters mentioned above is given by:

29

mg = 4, number of rings
ppr = 8, number of pixels per ring 0

Figure V.I. Log-spiral image tessellation.

R(i) = Rmin " (Rmax /Rmin)ilrf (V.I)

It is clear from Eqn V. 1 that the rings are exponentially spaced and also:

R (0) = Rmn (V.2)

R(rng) Rmx (V.3)

When a log-spiral image is being formed by combining and averaging rectangular pixels,
Rma. is typically chosen to be 1/2 the number of rows or columns (assuming a square array for
the rectangular image) in the rectangular image. This gives values of radii in terms of pixel
lengths in the rectangular image. Rmin is typically chosen to be about 1/10 of Rmu. Choosing
R min to be smaller will reduce the size of the "blind" spot, but will also result in a larger
exponential spacing (since R mx / R min will become larger. This can be undesirable since it leads
to an LSI image with less total number of rings.

In general the parameters ppr and mg, referring to the number of pixels per ring and the
number of rings, respectively, are free to be chosen. However, in most cases limits on the
minimum size of the log-spiral pixels in the inner ring will restrict the selection of these

30

I It 0

III

parameters.
A log-spiral tessellation results in pixels which all have the same aspect ratio. Since it is

favorable to form digital images with pixels which are nearly square (directional resolution is
more uniform in this case), a constraint equation can be developed relating ppr to rmg, such that
the aspect ratio of the log-spiral pixels is nearly one.

The aspect ratio for an arbitrary log-spiral pixel consists of a ratio between the radial
length, L, of a pixel and the arclength, S, of the pixel. Thus, the aspect ratio is given by:

Aspect Ratio = L (V.4)

S

where:

L = R(i)-R(i-1) (V.5)

S = " (R (i) + R (i-1)) / 2 (V.6)
ppr

The equation for S is gotten by using the equation for arclength given by s = r-0, where r is
equal to the average value of the inner and outer radii of the pixel and 0 is given by the angular
extent of each pixel: 2.r/ppr.

By setting the aspect ratio, L/S equal to one, and by using the above relations for L and S
and the previous expression given for the radius of the i- ring (Eqn. V.1) it is possible to derive
a relationship between rmg and ppr such that the log-spiral pixels will all have an aspect ratio
nearly equal to one. The result is:

log (R ma, I Rmim)rnmg =(V)
log [(I + ppr /t) I (ppr/n - 1)]

As an example, with R ma / R min = 10 and ppr = 64, the required value of rmg to assure
log-spiral pixels with aspect ratio nearly one is : mg = 24.

3. LOG-SPIRAL MAPPING (LSM)

Once an image is represented in LSI form in the image plane , a conformal transformation
called a log-spiral mapping (LSM) given by

w = In(z) (V.8)

where

z = x+jy (V.9)

and

31

w = u+jv (V.10)

is performed.
The LSM can also bc expressed as

I w I = In (r) = ln[sqrtx2+y2]=u (V.11)

and

= arctan (y /x)=v (V. 12)

Figure V.2 shows a simple edge image of a centered square and its corresponding LSM
image is shown in the computation plane. We have adopted the convention of magnitude along
the vertical axis and phase along the horizontal.

(a) (b)

Figure V.2. Original image (a) and its log-spiral image (b).

As explained in the introduction, LSM images are used by the MHONN and the LCT. The
rectangular to LSI transformation and the LSI image plane to computation plane conformal
transformation can be performed either in software or with special digital circuit hardware.
Another possibility for the former is the use of a VLSI LSI sensor.

32

II III ll I I I m I I ! I 0

3. A HARDWARE IMPLEMENTATION OF LOG-SPIRAL SENSOR
Using two separate CCD arrays to obtain log-spiral and rectangular information has its

drawbacks -- most notably, size and cost. To have a single CCD camera provide information in
both rectangular and polar formats, it would be necessary to use the approach of summing indi-
vidual rectangular elements to form larger polar pixels. The following is a way of achieving
this.

Directly "behind" the original set of shift registers would lie a second set of registers. The
primary set would be interconnected so that, when the data is shifted out, it is delivered row-by-
row to provide the data in a rectangular format. The second set of registers would have an inter-
connection scheme which reflects the polar pixel layout. That is, the picture elements would be
shifted out of the CCD array in groups which form the polar pixels. When the polar data is
shifted out (simultaneously with the rectangular data), all that must be known is the order in
which the polar pixels are being extracted and the number of rectangular elements which consti-
tute each polar pixel. Because the polar pixels increase in size exponentially as their distance
from the center of the sensor increases, so will the number of individual pixels which must be
averaged to calculate the intensity of that pixel.

Figures V.3 and V.4 show two possible averaging schemes for the extracted data. Both are
essentially the same, with the only difference being that one uses an analog summing arrange-
ment while the other uses digital hardware. The second approach appears to be more robust and
so is advocated. Operation of the two is detailed. In both cases, the ROM holds one word of
data for each polar pixel in the sensor. That data is the number of individual elements whose
centers fall within the defining boundaries of the polar pixel. This information is termed the
"run-length" for the pixel.

a. Operation of the analog summing arrangement (Fig V.3)

1) The count-down and S registers are loaded with the run-length of the next polar pixel being
shifted out of the CCD.

2) As data is shifted out of the sensor array (and into the summing hardware), the count-down
register is decremented. When the register reaches zero, the output of the Op-amp (which
has been "summing" the pixel data) is fed to the A/D converter, the ALU divides that digi-
tized sum by the run-length for that pixel (thereby performing the averaging), the OP-amp
dump switch is activated (zeroing the output), and the next run-length is loaded.

3) Operation continues until all pixels in the current frame have been read.

b. Operation of the digital summing arrangement (Fig V.4)

1) At the beginning of a pixel-summing cycle, the A register is zeroed, and the count-down
and S registers are loaded with the run-length of the next polar pixel.

2) As each rectangular element is shifted in, it is passed through the A/D converter and
summed in ALUl. The results of each addition are placed in register A so that a cumula-
tive sum may be obtained. Also, the count-down register is decremented.

3) When the count-down register indicates that the last element has been summed, the total is
divided (in ALU2) by the run-length for that pixel (stored in the S register), thereby form-
ing the average pixel intensity.

33

Address can be zeroed0
and incremented

ROM
(Run Length)

C

PixelR
voltage

in /

TO
Memory

Figure V.3. Analog pixel-summing arrangement.

34

ROM

(Run Length)

Data
Out

Pixel
Voltage /0

inA

S

x y

ALU2 z Z=x/y

To
Memory

- Figure VA. Digital pixel-summing arrangement.

4) The cycle continues until the entire frame has been read.

A simple example of this operation follows. We will use the second approach (digital sum-
ming) and detail the operation in a clocked fashion. Assume a single- or multi-phase clocking
arrangement in which, during each complete clock cycle, a single rectangular element is shifted
out of the sensor and both ALUs are able to perform their required functions (if called upon to
do so). We also assume that the hardware requires one extra clock cycle to perform the set-up
operations necessary prior to summing the elements which form a particular pixel. For this
example, the run-lengths of the first three polar pixels to be extracted (all that we will consider at

35

this time) are 4, 17, and 32 (completely arbitrary at this point since we do not know the layout of
the polar pixels). Simulation is as follows (clock cycle followed by functions performed): 0

1) Zero ROM address. Load count-down and S registers with run-length of first polar
pixel to be shifted out (4). Clear the A register.

2) Shift first rectangular element into A/D converter (flash converter) and add output to
value in the A register (0). Store result in the A register. Decrement count-down 0
register. Count-down register does not equal zero (yet) so continue.

3) Shift next rectangular element into A/D converter and add output to value in the A
register. Store result in the A register. Decrement count-down register.

4) Same as 3). 0
5) Same as 3). However, now the count-down register is zero. Therefore, divide the

output of ALU1 by the contents of the S register (the run-length) in ALU2 to form
the average pixel intensity. Store this in memory.

6) Increment the ROM address to point to the next run-length. Load the count-down
and S registers with the next run-length (17). Clear the A register. 0

7) Shift first rectangular element of the next polar pixel into the A/D converter and add
output to value in the A register (0). Store result in the A register. Decrement
count-down register.

8) Shift next rectangular element into A/D converter and add output to value in the A
register. Store result in the A register. Decrement count-down register. 0

continue...

23) Shift next rectangular element (17' h in this pixel) into A/D converter and add output
to value in the A register. Store result in the A register. Decrement count-down 0
register. Count-down register is now zero. Therefore, divide the output of ALU1
by the contents of the S register (17) in ALU2 to form the average pixel intensity.
Store this in memory.

24) Increment the ROM address to point to the next run-length. Load the count-down
and S registers with the next run-length (32). Clear the A register. 0

25) Shift first rectangular element of the next polar pixel into the A/D converter and add
output to value in the A register (0). Store result in the A register. Decrement
count-down register.

26) Shift next rectangular element into A/D converter and add output to value in the A
register. Store result in the A register. Decrement count-down register. 0

continue...

56) Shift next rectanguler element (32nd in this pixel) into A/D converter and add output
to value in the A register. Store result in the A register. Decrement count-down 0
register. Count-down register is now zero. Therefore, divide the output of ALU 1
by the contents of the S register (32) in ALU2 to form the average pixel intensity.

36

Store this in memory.
57) Increment the ROM address to point to the next run-length. Load the count-down

and S registers with the next run-length. Clear the A register.

Continue until entire array is read.

This algorithm is very systematic and easily implemented, as shown above.

Since pixels on the innermost ring of the polar arrangement have the smallest area, they
will be formed from the smallest number of rectangular elements. Consequently, all timing con-
siderations and error analysis must be performed using these pixels. That this is so for error
analysis is evident from an averaging point of view. Since the polar pixel's intensity will be the
average intensity of the rectangular elements whose centers lie within its border, the smaller the
area of the polar pixel, the greater will be the error (or error variance) of the estimated intensity.
As for timing considerations, since one clock cycle is wasted in preparation for each polar pixel
(preparing the hardware to sum and average the incoming rectangular elements), the smaller the
polar pixel area, the greater will be the clock-cycle overhead expended. Hence, the dependence
of timing considerations on the innermost ring of polar pixels (smallest polar pixels) is justified.

37

SECTION VI

MULTI-PIXEL TARGET RECOGNITION

1. INTRODUCTION

This section presents the design of a shift invariant pattern recognizer based on a modified
higher-order neural network (MHONN). When the MHONN is integrated with the centroid
calculation and the LSM subsystems, translation, rotation around the optical axis, and scaling
invariant pattern recognition can be achieved by this integrated system. The design objective is
to deal with large-scale images with possible pattern deformation, noise and highly textured
background.

In this report we emphasize the important aspects of the MHONN algorithm development
and simulation results. Hardware design can be found in E.Subsystem Report: Analysis.

2. POSITION IN THE INTEGRATED VISION SYSTEM

With reference to Fig. 1. 1, Section I of this report, we see that the MHONN subsystem uses

as its input the LSM computation plane images (one windowed image per object.)
This section describes the MHONN design. The MHONN is the most vital part of the

overall system. Its input is a LSM binary edge image, and its output is a classification signal
which identifies the object and allows further processing of the corresponding window. It is
required to achieve reliable and robust pattern recognition independent of the possible pattern
scaling and rotation (translation invariance is achieved by the centroid subsystem,) noise, and
deformations. Detailed theoretical development and design considerations about MHONN are
addressed in the report E.Subsystems Report - Algorithms. Here we describe the most salient
aspect of the MHONN theory, design and simulation results.

3. MHONN DESIGN

As stated before, the centroid calculation eliminates the object translation in the original
image; the LSM converts the object rotation in the original image into a horizontal cyclic shift
(CS) and the object scaling into a vertical ordinary shift (OS) in the log-spiral mapped image.
Therefore, the task of the MHONN is to achieve pattern recognition independent of this two
types of shifts.

Reid [11 proposed a HONN with only the second-order terms to achieve ordinary
translational invariant pattern recognition. The original second-order neural network developed
by Reid consists of only two layers of neurons. As shown in Fig. VI. 1, the first layer is the
multiplier-layer, and the second layer is the output layer, in which the neural transfer function is
a weighted sum followed by a E function as given in Eqn VI. 1. The 0 function is a step
function. The adjustable weights are between these two layers. Reid used one layer of adjustable
weights and directly implemented Giles' [2] translational invariance constraints by setting
certain weight values to be the same. For instance, in Fig. VIA, w (Z2).(1.4) = W (4 ,1),(3 .3), and
wi (1,21(1.3) - w (3.1)(3.2), etc. For clarity of notation, in the following text, we use a superscript
'i" to indicate the i" output element (summer), and the ordered pairs in the subscript denote the
location of the two pixels. In this architecture, Reid only utilized these constraints to reduce the

38

independent weights number, therefore speeded up the training process, but the actual number ot
weights was not reduced by the the invariance constraints. The advantage of this setting is that
the network is very simple. However, the disadvantage is the huge memory requirement for
weight storage.

In our system, even though the MHONN has to handle not only the OS in the vertical
direction, but also the CS in the horizontal direction, the nature of the problem is still of second
order (i.e., it is necessary and sufficient for the classifier to utilize the correlation information 0
between each pair of input signals to achieve the desired recognition). So, a second-order neural
network is used as the pattern recognizer. However, we have to make several major
modifications to the original second-order network to meet our special needs as well as to
improve the network performance. This constitutes one of out major original contributions.
Before further discussion, the term feature must be defined for clarity and convenience. In this
section of the report, feature is defined as a vector connecting two pixels in the input plane. The
length and orientation of this vector specifies a unique spatial separation between a pair of
pixels.

a. HONN Architectural Modification

As mentioned in the previous section, the input of the HONN is binary, so AND gates
instead of multipliers are used to extract the correlation information between each pair of the
input pixels, because the AND operation is much more computationally efficient and easier to
implement in hardware. The first modification consists in adding a layer of summers in-between
the AND layer and the output layer. The significance of this modification is two-fold: first, it

INPUT MULTIPLIER SUM

LAYER LAYER LAYER

Figure VI1. Original second-order neural network architecture.•

39 0

I | II ~i •-

reduces the number of weights in the by orders of magnitude, which means that the memory
reduction in software implementation, and the number of components in hardware
implementation is reduced in proportionally. Second, it reduces the computation time of the
software simulated HONN.

Fig. VI.2 shows the architecture of the modified second-order neural network with
translation invariance. In this architecture, the output signals of the AND gates corresponding to
each unique type feature are first summed together, and then, the summed signal is fed into one
adaptable weight.

From now on, the summers in the SUMI layer will be referred as "accumulators", and the
output of this layer will be referred as "accumulator output pattern". The value of an
accumulator output reflects the frequency of occurrence of a particular type of feature. Because
the accumulators only record the occurrences of features but not their locations, the accumulator
output pattern is translation invariant. From a pattern recognition viewpoint, the MHONN in
Fig. VI.2 consists of two parts: the first part includes the ANDlayer and the accumulator layer,
the function of this part is to extract translation invariant features from the input image; the
second part is composed of the adjustable weights and the output summers. This part is a one-
layer neural network. Its function is to classify the translation invariant patterns generated by the
accumulators.

The above seemingly simple modification can save a tremendous amount of memory space
or hardware components. The analytical derivation is as follows: the general second-order
neuron transfer function is given in Eqn.(VI.1):

wl01• 2/

INPUT AND SUM_I SUM_2

LAYER LAYER LAYER LAYER

Figure VI.2 Architecture of the modified second-order neural network with
translational invariance.

40

0

N
Yj=E 1 1 wkjtXj (VI.l)

Il=1k=j+1

where xj stands for the jt pixel located at row rj and column c f. fzr pplying the translational
invariant constraints (see Eqn. VI.9) onto the weight matrix W. = w'jkJ ,the weights w'j's will

group into classes. Weights in each class will have the same value, no matter what the value
might be. The above modification can be represented by rearranging the summations in the 0
above equation according to the classes:

yj I IX W S Xi 0{ Wi MRI j Xk) (VI.2)

where m = rt - rj; n = ck - cj; (rk,ck) represents the row and column location of pixel xk; v(m,n)
is a set of ordered pairs (xj , xk) in which the vector from xj to xk belongs to the same type of
feature specified by (m, n)." To be more precise, for each pair of (m,n), if m = rk - ri and
n = ck - ci, then (xj , xk) belongs to the set v (m,n).

After this modification, the perceptron learning rule (which was used in Reid's HONN)
can still be used to train the network. The weight values can be updated according to the 0
following equation:

Awi fnu = at (Yi d - y, a).- Amn (VI.3)

where

Am, = xk (VI.4) •
v (nn)

where m , n , v are defined as before; yj d is the desired th output element value, and yj a is the
actual ith output element value. However, it will be shown in subsection VI.3.c. that a better
alternative exists for the learning rule.

Obviously, if the input window size of the MHONN is N x N, the range of m and n are both 0
from - (N - 1) to (N - I). Therefore, the maximum possible numbei .. independent weights
is (2N - I)2. However, m and n cannot be zero at the same time because we don't correlate a
pixel with itself; in addition, according to Eqn (VI. 1), once the pair (xj , xtk) has been
correlated, the pair (xk , xj) will not be correlated. So, the total number of independent weights
is:

Np. 2N-_ 1)2_ =2(2 -N)=O(N 2) (VI.5)2

For an N x N input image, the number of weights in the original HONN is
CN2 2 =O (N 4), but after the modification, the number of weights in the MIONN is reduce to
2 (N 2 -N), and the trade-off is only to add 2 (N 2 - N) summers. This modification reduces
not only the memory requirement by a factor of O(N 2), but also the complexity of the simulated
HONN. According to Eqn (VI.1), the complexity of the original simulated network C,,. is:

Cog. = C2 2 AND-operations

+ Ck, summations (VI.6) •

+ Ck2 multiplications

41

After the modification, the complexity C.W. becomes:
CMf. = Ck2 AND -operations

+ Ck; + 2 (N 2 - N) summations (VI.7)

+ 2(N 2 - N) multiplications

Assume that each AND-operation, summation, multiplication takes a, y time units,
respectively. When N is large, the complexity reduction factor C, is:

C, Ck2.a+[Ck2 +2(N 2 -N).+2(N 2 -N)-y
ck2 .(a+ 5 + -f)

Ck2.(a+13+y)
4 (VI.8)

a+P3+y

a+__ 1

a+o+y 8

For a general purpose digital computer, a =2 (clock cycle), 0 =2 (clock cycle),
y = 28 (clock cycle), so the complexity reduction factor is about 8.

b. Invariance Constraints Development

The ordinary translational invariant constraint developed by Giles [2] is stated here with
new notation:

w'jA = W (r-r), (c&-c 1) =W',M, (VI.9)

This constraint cannot handle the CS properly, because the CS is a special case of the ordinary
translation, and it requires a stronger constraint.

As shown in Fig. VI.5, in the LSM computation plane, a feature F I in image (A) is
cyclically shifted to the right by one pixel and results in feature F 2 in image (B). If CS invariant
pattern recognition is desired, these two features should be regarded as the same feature, i.e., the
weights connecting to these two features should be equal. However, if we apply the ordinary
translational invariant constraint to images (A) and (B), we will have the following situation:

By scanning through the image column-by-column, from left to right, in
image (A) we get:
x I = pixela , x 2 = pixelb
and
WFI =W(r2-r ,) , (c 2 - c) = W - 2 , 3

in image (B) we get:
x 1 = piXelb , X2 = pixela
and

42

WF2 =W(r 2 -r,). (c 2 -c 1) =W2, I
Obviously, wF, * wF2, therefore, this constraint is not CS invariant.

As shown in Fig. V.38, in the LSM computation plane, a feature F1 in image (A) is
cyclically To develop the true CS invariant constraint, we must first have a close look at how the
CS is different from the OS. As shown in Fig. VI.3, a CS in the horizontal direction (without
losing generality, we can assume a right shift here) will not shift any signals on the image out of
the image, but rather, wrap those signals back to the left side of the image. If we view the LSM
computation plane image as a cylinder , i.e., let the left and right sides of the image meet, the CS
becomes an ordinary translation on the cylindrical surface. An immediate observation is that on
this cylindrical surface, each pair of pixels corresponds to two features: one feature is obtained
by connecting pixels a and b counter-clock-wise(CCW), and other other one is obtained by
connecting them clock-wise(CW). So the question is: which feature should we choose in order to
achieve the CS invariance? The answer to this question depends on the convention we use to
scan the image pixels.
0 When the images are scanned column-by-column, from left to right:

In the ordinary translational invariant algorithm, the CCW feature (F1) is always used to
represent each pair of pixels. The pair (a, b) is represented by F I, while after the cyclic right
shift, the same pair is represented by another feature, F3 , because the pixel b is encountered
before pixel a. Obviously, there two features are not equal, so we have wF, * wF3 . Therefore,
this way of choosing features cannot handle CS invariance properly. However, if we do not
consider the directions (i.e, CCW or CW) of the connections and only choose the feature with
the shorter length (or the longer length), the CS invariance is achieved.

Under the above image scanning convention, the invariant algorithm we used in the
MHONN is the following: each feature is specified by a pair of (Arow, Aco/), and each
accumulator sums up the occurrence of one unique type of feature in the N x N input image.
According to this algorithm, the ordinarv translational invariant algorithm is first applied to each
pair of pixels, which means the CCW fcature is used; but if the Acol of a CCW feature is greater
than N/2, then CW feature is used; if the Acol is equal to N/2, the CW feature and the CCW
feature both have the same length, we pick the one with positive Arow.

1 2 3 4 1 2 3 4
SlQ

2 - F, cyclic 2 F

3 shift 3 a

4 4

(A) (B)

Figure VI.3 Cyclic shift

43 0

The CS, OS invariant weight constraint implementation algorithm discussed above is
denoted as "MHONN Invariance Algorithm I". Algorithm I has been simulated with a program,
and the simulation results show (see Software Test Report -- Simulations for data) that this
algorithm can indeed handle the translation in the vertical direction and CS in the horizontal
direction perfectly.

c. Learning Mechanism for the Modified HONN

In practice, pattern recognition requires the nonlinear separation of the pattern space into
subspaces, with each class of patterns occupies one or more of the subspaces. It was found [3,4]
that a first-order neural network with single layer of adjustable weights can only perform linear
discrimination. However, either first-order network with multilayer adjustable weights (in
between two consecutive layers of weights are the first-order hidden layer neurons, of course) or
higher order network with single layer of adjustable weights can achieve the desired nonlinear
separation in the pattern space. Therefore, one layer of adjustable weights is sufficient for the
HONN or MHONN to perform nonlinear discrimination among the patterns.

In order to achieve the desired classification, the adjustable weights have to have "proper"
values. The process which leads to the weights to have the proper values is called the learning
process of the neural network. In other words, the objective of the learning process is to
implement a desired mapping between a set of input patterns and a set of output patterns by
adjusting the weights to the proper values. In Reid's original HONN with only one layer of
adjustable weights, the perceptron learning rule was used. This learning rule is a special case of
the delta rule. In the delta rule the input and the output of the network are not necessarily binary
values, and in the output layer neurons, a sigmoid E function is used. In the perceptron learning
rule, all the input and output are required to be binary values, and the output neuron use a step
function instead of the sigmoid function. The perceptron learning rules for the second and the
third order HONNs can be.expressed as:

Aw'jk=a(yya)xJ xk (VI.IO)

AwlA = at (Y i XJ Xk X (VI. 11)

where A w is the modification quantity for each weight value at each update step, a is the
learning parameter(Reid used a = 1 in his HONN), y4 denotes the desired i output, y? denotes
the actual hi output, and x's are the inputs.

Using this learning rule, the weight values are updated iteratively until all the actual
outputs are equal or close enough to the desired ones. Then the learning process is terminated
and we say that the network has converged.

It was shown by Minsky [4] that if there exists a mapping between the input and output
patterns, then the perceptron learning rule will find a solution(i.e. a set of proper weight values)
in finite iterations. However, two points are worth mentioning here: first, it is not guaranteed
that the perceptron learning rule will find a set of weights to realize any desired mapping;
second, as stated by Minsky "All solution vectors (i.e. each solution vector stands for a set of
weights) form a 'convex cone', and the program (the perceptron learning rule) will stop
changing A (a certain solution vector) as soon as it penetrates the boundary of this cone". In
other words, for a desired mapping which has solution(s), the perceptron learning rule cannot
guarantee to find the "best one" (i.e. the set of weights implementing the optimal mapping

44

between the input and output patterns) in any sense. Therefore, even though the perceptron
learning rule has the advantages of simplicity and rapid convergence rate (compare with the 0
general delta rule, and the Hebbian rule), it is not sufficient to handle the real world pattern
recognition applications in which the classification is difficult (any arbitwary mapping could be
required) and the solution (set of weight values) is desired to be optimal.

Another simple learning mechanism used for ANN with one layer weights is the one use in
associative memory (AM). It is referred as Hebbian learning rule. This learning is proposed 0
based on the conjunction theory of learning [5]. A synapse strengthens if both the presynaptic
and the postsynaptic neuron are active at the same time. In an ANN, the weights are the synapses
between two layer of neurons, and the weight values are the synaptic strength. In a single layer,
feed-forward ANN, the input layer neurons are the presynaptic neurons, and the output layer
neurons are the postsynaptic neurons. The signal value of each neuron is its activity level.
Unlike the delta rule, Hebbian learning rule can be expressed as:

Amij = a si fi (VI.12)

where a is the learning parameter, the fj is the jth output neuron activity, and si is the ith input
neuron activity. Kohonen developed the AM based on this learning rule and has proven that the
set of weight values obtained by AM represent "the optimal linear associative mapping" in the
least square sense between any desired mapping between sets of input and output patterns [6]. In
addition, this learning mechanism obtains all the weight values at once, no iteration is needed, so
the training time is much shorter when compared with the delta rule (the speed difference is
about one or two order of magnitudes as shown in section V of the Software Test Report --

Simulations).
We choose to use AM instead of the delta rule in the MHONN based on the theory and

some encouraging simulation results obtained by Kohonen. In reference [7], after the AM was
trained, it could correctly recognize testing patterns that experienced severe noise corruption and
occlusion. These results indicates that the AM is quite robust to these types of image
degradations.

The MHONN with AM (based on Hebbian learning rule) is illustrated in Fig. VI.4 In this
figure, f denotes a desired output pattern (a vector), and fj denotes the j'4 component of the
vector; s denotes a stimulus pattern (a vector) to the AM, and si represents the ith component of
the vector; r denotes the response vector (i.e. the output vector of the AM), and rj is the jth
element of the vector. The s is the output pattern from the shift invariant accumulators. Let M
denote the weight matrix with each element corresponding to an adjustable weight in the
MHONN. The matrix M which implements the mapping between a set of inputs
{s , s2, ' " , - , s,) and a set of desired outputs (f , 2, "'" , "" , , must
satisfy the following equation:

fk = M sk for k=1,2, ,p (VI.13)

The M is obtained by the following equation:

M = F S+ (V. 14)

where F=(f 1 ,f 2 , "'",fk, "" ,f,), S=(st,s 2 , ,sk, ' ,sp), and S' is the
pseudoinverse of S [9]. If the stimulus vectors sk's are linearly independent, then
S+=(ST S)-I S .

45 0

f
~fl f2 h f

4

ri r2 r 2

INPUT AND SUM 1 SUM2
LAYER LAYER LAYER LAYER

Figure VIA MHONN with associative recall learning mechanism

Simulation design and results using this approach are given in the Sect. V of the Software
Test Description -- Simulations and Software Test Report -- Simulations of this report. In the
following section we summarize simulation results.

4. SIMULATIONS
In this section we present the results of simulations performed with the MHONN

subsystem. We not only did simulations with gray level images in the LSM computation plane,
but also with gray level images in the rectangular image plane. Simulations with different types
of noise, partial occlusions, etc. were also performed. A detailed description of all the
simulations is given in the report C. Software test- Simulations, Section VI. Here we only give
some significant simulation results.

Figure VI.5 shows the three ICBM images used for simulations. These are the original
images. They were rotated, scaled and displaced in software to perform some of the simulations
as explained below.

a. MHONN OS, CS Invariant Pattern Recognition with Gray-Level Input
Table VI.1 shows the recognition results when the shifted images are presented to the

MHONN. In this table, the input patterns are listed in the first column, the recognition results are

46

given in the last column, values in the second column (called energy) give the number of non-
zero intensity pixels in each input image, and values in the other middle columns are the 0
MHONN -,,put values. The notation "icbml.ulO.r-15" means that the pattern "icbml" is shifted
up by 10 rows, and cyclically shifted to the right by -15 columns (i.e., cyclically shifted to the
left by 15 columns). If a certain pattern is misclassified, a "*" is marked in the table for attention.
Recall that the simulations are done in the LSM computation plane in which vertical shifting is
equivalent to scaling and horizontal shifting to rotation on the optical axis for the rectangular 0
image.

From the simulation results we see that as long as no pixels are shifted out of the image (i.e.
the case of the first two shifted patterns in each class in Table VI. 1), the MHONN output values
are the same as the desired output values. This indicates that the MHONN can perform precise
OS and CS invariant pattern recognition for gray-level images. 0

The performance of MHONN (with multipliers) for gray-level input OS and CS invariant
pattern recognition can be considered to be successful. When only OS and CS are applied to the
input, the recognition results are correct. When small occlusions occur in the input, the MHONN
can still correctly classify the patterns, but it fails when occlusion becomes severe. This
simulation result shows the MHONN's potential to handle gray-level patterns, however, further
studies are necessary to improve the MHONN's performance in this type of applications.

b. MHONN OS, CS Invariant Pattern Recognition with Binary Input

Simulation results of this test are given in Table VI.2. In Table V.2, all notations and
table conventions are the same as those in the previous subsection. We see that each shifted 0
pattern and its original pattern give exactly the same outputs. This indicates that the MHONN
can perform precise shift invariant pattern recognition for binary images.

c. MHONN's Noise Tolerance •

Table VI.A MHONN OS, CS invariant pattern recognition with gray-level inputs

input energy 01 02a 03 recognition result
icbml 282 1.00 0.00 0.00 icbml 0
icbml.ulO.r-15 282 1.00 0.00 0.00 icbm1
icbml.u-22.r22 282 1.00 0.00 0.00 icbml
icbml.u-27.r-13 243 -0.95 2.19 0.00 icbm2 *
icbm2 293 0.00 1.00 0.00 icbm2
icbm2.u13.r20 293 0.00 1.00 0.00 icbm2
icbm2.u-20.r-18 293 0.00 1.00 0.00 icbm2 0
icbm2.u26.r22 247 -1.82 3.03 0.00 icbm2
ic 630 0.00 0.00 1.00 icbm3
ic u14.r-8 63J 0.00 0.00 1.00 icbm3
ic .u-5.r30 6 0 0.00 0.00 1.00 icbm3
ictr.. - -25.r-8 622 -0.27 0.32 1.00 icbm3 0

47 0

Table VI.2. MHONN OS, CS invariant pattern recognition with binary inputs

input energy 01 02 03 recognition result
icbml 108 1.000 0.000 0.000 icbml
icbml.u8.r12 108 1.000 0.000 0.000 icbml
icbm2 96 0.000 1.000 0.000 icbm2
icbm2.u-12.r17 96 0.000 1.000 0.000 icbm2
icbm3 196 0.000 0.000 1.000 icbm3
icbm3.u-7.r-18 196 0.000 0.000 1.000 icbm3

In this simulation, for a given SNR, five noisy patterns per class are used, and the
network performance is measured by its recognition rate (RR) which is defined as the number
of correctly recognized trials divided by the total number of trials tested for each class.

In Table VI.3 we see that with the increasing of noise, the 0 1 value begins to decrease,
while the 02 begins to increase, 03 and 04 vary in a much smaller range, and stay close to
zero. When noise level reach certain point, the peak value output element switches, and
misclassification occurs. Another observation is that the noise tolerance of the MHONN is
pattern dependent, for instance, at SNR = 0.75, the ICMB1 is recognized correctly, but the
Ellipse is not. This phenomenon is very common with most of the pattern recognizers --
regardless of ANN based or conventional types. This is because the pattern recognizer forms an
uneven division of the pattern space. In this case, apparently, the ICBM3 occupies a larger space
than the other three classes, so when severe noise is added, all the patterns are classified as
ICBM3. It is desirable for a pattern recognizer to divide the pattern space in a more uniform
manner. However, research of this subject is beyond the scope of this project.

c. MHONN's Tolerance to Occlusions

Table VI.3 MHONN noise tolerance test result -- LSM icbml as input

SNR 01 02 03 04 recognition result
*a 1.000 0.000 0.000 0.000 icbml
10 0.982 0.029 0.000 0.027 icbml
2 0.940 0.211 -0.025 0.050 icbm1
1 0.875 0.458 -0.094 0.022 icbml

0.75 0.808 0.740 -0.104 -0.047 icbml
0.7 0.820 0.707 -0.123 0.020 icbm 1
0.7 0.781 0.799 -0.109 -0.043 icbm3 *

0.65 0.816 0.788 -0.138 0.012 icbml
0.65 0.763 0.878 -0.114 0.088 icbm3 *
0.6 0.750 0.869 -0.112 0.069 icbm3 *

48

The purpose of this simulation is to evaluate MHONN's tolerance to occlusion. Table
VI.4(a)-(b) gives the testing results for the four classes of pattern. The table convention is the
same as before. In the last column of each table, if a pattern is misclassified, a "*" will be
marked; if a pattern is correctly recognized, but if the difference between the maximum output
value and the second largest output value is less than 0.1, we say that the pattern is "marginally
recognized", and a "?" will be marked.

From Table VI.4 we see that out of sixty-six cases have been tested, only one pattern -

"icbml.0.55.0.64" is misclassified as trapezoid. In this case, only sixteen on-pixels, which is
about 14.8% (16/108 = 14.8%, i.e. about 85% of the input pixels are deleted) of the original
signal energy, are left in the patterns. In cases that patterns are marginally recognized, the testing
patterns' signal energies are all less than 35.6% ("ellip.0.40.0.64") of the original ones. These
can be considered as severe occlusions because about 2/3 of the signals are missing. Simulation
results of this test show that the MHONN is very robust to occlusions in its input patterns. We
want to emphasize that the occlusion situation discussed in this section is different from
occlusion of the sensed (input) image before the LSM.

0

5. SUMMARY

In this section, we first pointed out the design goal and the position of the MHONN pattern
recognizer in the overall system. Then the detailed MHONN design which include the •
architecture design, invariance algorithm development, and the associative mapping learning
mechanisms were presented. This subsystem is designed to achieve OS, CS invariant pattern

recognition in practical situations. Finally,the performance of MHONN was evaluated with
respect to invariance in pattern recognition, noise tolerance, robustness to input pattern
deformation and degradation. From the simulation results, we find that: (I) the MHONN with •
the OS, CS weight constraints, can perform OS, CS invariant robust pattern recognition for
gray-level and binary input images, given that the objects are completely included in the
window; (2) the MHONN has very high noise tolerance, it can correctly recognize patterns with
noise signal almost as strong as the original information signal; (3) the MHONN can perform
properly under severe input pattern occlusion.

49

I I I l0

Table VIA(a) MHONN performance test result -- occlusion in LSM icbml

input energy 0.L 02 03 04 recog. result
icbml 108 1.000 0.000 0.000 0.000 icbml
icbml.0.10.0.64 90 0.689 -0.008 0.014 0.013 icbml
icbm1. 10.20.0.64 91 0.707 -0.013 0.006 0.020 icbm l
icbml.20.30.0.64 91 0.703 -0.013 -0.009 0.039 icbml
icbml.30.40.0.64 95 0.765 -0.012 0.010 0.022 icbml
icbml.40.50.0.64 91 0.706 -0.014 0.001 0.028 icbml
icbml.50.60.0.64 88 0.659 -0.009 -0.008 0.031 icbm1
icbml.0.20.0.64 73 0.451 -0.026 0.005 0.047 icbml
icbml.20.40.0.64 78 0.510 -0.026 -0.012 0.067 icbml
icbml.0.30.0.64 56 0.262 -0.037 -0.050 0.108 icbml
icbml.20.50.0.64 61 0.308 -0.038 -0.053 0.116 icbml1
icbml.0.40.0.64 43 0.149 -0.034 -0.017 0.080 icbml
icbml.0.50.0.64 26 0.049 -0.021 0.005 0.044 icbm I ?
icbml.0.55.0.64 16 0.017 -0.012 0.007 0.023 trap *
icbml.0.64.0.35 48 0.276 -0.016 0.003 -0.032 icbml

5o

Table V/14(b MIIONN performance test result -- occlusion in LSM icbm3

input energy 01 02 03 04 recog. result
icbm3 196 0.000 1.000 0.000 0.000 icbm3
icbm3.0.10.0.64 159 0.013 0.580) 0.062 0.138 icbm3
icbm3. 10.20.0.64 163 -0.010 0.719 0.001 -0.043 icbm3
icbm3.20.30.0.64 173 -0.023 0.882 -0.025 -0.132 icbm30
icbm3.30.40.0.64 172 0.015 0.870 -0.073 -0.098 icbm3
icbm3.40.50.0.64 175 -0.030 0.875 -0.050 -0.076 icbm3
icbm3.50.60.0.64 139 0.016 0.409 0.076 0.129 icbm3
icbm3.0.20.0.64 126 -0.002 0.346 0.062 0.097 icbm3
icbm3.20.40.0.64 149 -0.006 0.762 -0.079 -0.2 15 icbm30
icbm3.0.30.0.64 .103 -0.016 0.280 0.017 0.013 icbm3
icbm3.20.50.0.64 128 -0.024 0.682 -0.133 -0.278 icbm3
icbm3.0.40.0.64 79 -0.004 0.230 -0.033 -0.052 icbm3
icbm3.0.50.0.64 58 -0.010 0.198 -0.062 -0.098 icbm3
icbm3.0.55.0.64 36 -0.004 0.123 -0.043 -0.081 icbm3
icbm3.0.64.0.20 190 0.003 0.915 0.030 0.055 icbm3
icbm3.0.64.0.25 180 0.018 0.756 0.055 0.165 icbm3
icbm3.0.64.0.30 160 0.060 0.564 0.032 0.198 icbm3
icbm3.0.64.0.35 114 0.097 0.255 0.007 0.143 icbm3
icbm3.0.64.0.40 50 0.012 0.083 -0.021 0.010 icbm3 ?
icbm3.0.64.0.45 28 0.003 0.036 -0.010 0.003 icbm3?
icbm3.0.64.0.50 14 0.003 0.006 0.000 0.004 icbm3 ?

51S

SECTION VII

LINE CORRELATOR TRACKER FOR SCALING AND ROTATION

1. INTRODUCTION
The line-correlator-target-tracker reported in this section can be used to determine changes

in target size and orientation when used with the LSM computation plane image. As the target
gets closer to the interceptor, its image increases in size. If the initial distance is known, the
change in size determines the distance. If either the target or the seeker rotate with respect to the
optical axis, the LCT is also capable of determining the degree of rotation. The images used by
the LCT are in the computation plane of the logarithmic-spiral mapping

2. LINE CORRELATOR TRACKER

An original one dimensional correlation tracker for motion prediction was developed and
used for rotation and scaling motion prediction in the log-spiral computation plane. The algo-
rithm is called "line correlator tracker" (LCT). It has recursive, spatio-temporal, correlation
characteristics and also possesses simplicity and separability properties. These properties make
the design and implementation of the algorithm possible in a highly parallel fashion using neural
networks. The most relevant characteristic of the algorithm is that the motion prediction prob-
lem is solved without using correspondence. Several approaches have been previously proposed
to solve the motion prediction problem without using correspondence [1,2]. The approach pro-
posed in this section is different and produces good experimental results with relatively few
computations.

Consider a dynamic scene. In general, the intensity of the light reflected by the scene will
be a function of location and time, I(x,y,t). We can define its gradient in this 3D space,

ax ay 't] (Vi.1)

and its gradient in 2D geometric space,

= ax __ (VIl.2)

For uniform illumination, changes in intensity at a point are due to object motion (assume that
other disturbances are inhibited). If the intensity of a point in the object does not change with
respect to s (in other words, an infinitesimal spatial displacement corresponds to a change dt in

time between consecutive frames), then - = 0. Let the unit vector i4 be given by

u = c(-vit),1) (VII.3)

where c = (I v 12 + 1) 2 and'(i,t) is the point velocity. Then, using the above, we have

.t+ = 0 (VII.4)
at

Let t be the time between two successive frames, t = t 2 - t 1. We then have

52

A(g,t) = TI(.tLt) V.5

= (Ax Ay)T (VII.5) 0
then

al =l(.it)-($c~-'O(VII.6)
at

The approximation of (VII. 6) is accurate as long as the object motion is relatively small. Using
finite increments in (VII. 12),

l(tl =l(.~t)+alIf't2)A __(_,t2)

I(it 1) = I (i ,t2) ax y Ay (VII.7)

In order to deal with large object motion, a recursive process is essential. Thus, to obtain an
iterative algorithm, we proceed as follows:

Let's consider only one-dimensional motion only for the moment. Rewrite (VI. 7) as

ai(x,t2)
I (x,,,t . = I (X,t2~ ax, -EXJAxi (VII.8)

where

[Ri) =Sample+ [(X0,: 1t

(Tj} = Sampled[I(X,t2t]
and xo is an initial pixel position in the first frame; xj is an arbitrary chosen pixel position in the
second frame. Normally, we will choose xj to be equal to xo unless a priori information about xj
is provided. Thus, for any pixel and for a discrete case, we have

{Rj) (T + (X 2)xAx (VII.9)
ax1 =X

where

ax, 2 Tj - Tj

Now, define the correlation of (Rj] and (Tj) as

C RjTj (VII.10)
j=l

Combine (VII. 9) and (VII. 10) together and for Axi=Axj for all j,yield

ER 2 ERjTj

Axi = j=1 j=1 (Vu.11)R_ al 0

j=1 aXj

53 0

If motion would occur in the x direction only, then any row in the image would produce a good
estimate. However, motion can generally occur in both the x and y directions (in computation
LSM plane, i.e., scaling and rotation of the object in image plane).

The problem for general x/y translation is that corresponding rows (and columns) in frames
"i" and "i+l" within the moving area will be shifted with respect to each other. For example,
if Ax = 3 pixels and Ay = 5 pixels, the object has moved right by 3 pixels and up by 5 pixels and
rows in frame i+1 will be at location k+5 with respect to corresponding rows in frame i (where k
is row number). Hence, if a search is performed for each row in both the positive and the nega-
tive directions to find the best matching row in the second frame, this problem will be solved.
The question remains: how many rows must comprise the search area? This, of course, will
depend on how large a motion will occur between frames which, in turn, depends on sampling
rate and object speed. A reasonable figure is to allow for displacements of at most ten percent of
the maximum object dimension in pixels.

The row under investigation is correlated with all the rows in the search region and a pixel
by pixel estimate is performed. The row which produces the most consistent estimate is likely to
be the matching one. This can be best illustrated by Fig.VII. 1, where we search 3 rows above
and 3 rows below the kth row in the first frame. If the object, for example, moves up 2 pixels,
then the (k-2)th row in the second frame is perfectly matched to the kth row in the first frame.
That is, the estimate obtained from correlating these two rows using (VII. 11) is a consistent esti-
mate. Other matches will produce inconsistent results.

3. LCT NEURAL NETWORK IMPLEMENTATION

The LCT algorithm can be implemented by means of neural network models currently

available. We have chosen a Hopfield-Tank network because its analog VLSI implementation is
possible with current technology.

First Frame Second Frame

k-3

k-2

k-I

k k

k+1

k+2

IW k+3

Figure VII.1. Row Search Mechanisms

S4

The network is a two-layer HT network. The first layer consists of (2m + 1) "planes".
(Plane, is used here in the HT sense, not in the sensor sense (as in "image plane")). Each plane
contains n HT networks and each network has (2D + 1) neurons, where D is the maximum row
displacement. Each network computes row displacements and feeds its output directly to the
second layer. This layer computes the overall displacement based on the outputs of the first
layer. There is a single plane in the second layer. The plane contains (2m + 1)x(2D + 1) neu-
rons. The outputs from the second layer are the horizontal and vertical displacements. Figure 0
VII.2 depicts the general architecture of the UT network. The following subsections describe the
energy functions of the two layers.

a. First LCT Neural Network Layer
The model in the first layer contains binary neurons representing the row displacement •

between the two images (i.e., displacement along the abscissa). We use nx(2m + 1)x(2D + 1)
neurons. For implementation, we discretize the row displacement by letting -D < j < +D. We
also let [Vj 1 k represent the state of the jth neuron of Ith row and kth plane. When the neuron
[V ilk is 1, it means that the row displacement for the lth row in the kth plane is j. If subpixel
accuracy is desired, one can simply increase the number of neurons within the tracking window. •
If, for example, five neurons are used per pixel, an accuracy of 0.2 pixel will be achieved. For
this model to function, an energy function must be developed such that only one neuron within
each row is turned on when the network reaches stable state. The energy function for the lth row
of kth plane is given below.

0

First Layer

k='ml

0

Second Layer

k 2D Hcpfieldvnia
Inpu Image Network vertical

k=+r [0

Figure V11.2. General Architecture of the Neural Network 0

SS 0

Elk =-y!2
v. 1'

I Vi I - I .+2

£ (VII.12)

+ cy IS a - Quc iJ2 [VJI

where

Sik = Zj- RT(kj

J J

Qlk = a R j
j Xq+k)j

C
C t _

(i+e)
2

The first and the second terms in (VII. 12) provide row inhibition and global inhibition, respec-
tively. These two terms assure that there is one and only one neuron "on" for the Ith row of the
kth plane when the network reaches the stable state. These two terms are also known as the con-
straint terms. The last term is the data term or the objective term. Without this term, a neuron
will be on randomly. The presence of this term will force the neuron which corresponds to the
row displacement, to turn on. Notice that the third term is taken directly from (VII. 11), with the i
parameter corresponding to Axk. Due to the poor scaling property of the HT network, the con-
stant C is scaled to sensitize the data to row displacement i. e (0 < e < 1) is added to the scaling
term to avoid dividing by zero in case of zero motion. Rearranging (VII.12), the first term is
written

2 (- bij)) [(Vi..13)

the second term,

-I([(VII. 14)/- i j L i

and the third term,

-1- 1 Sk- QIk i)]2 [vjk (VII. 15)

where 8ij denotes Kronecker delta. The general energy function of a HT network [3,4] can be
written as

Elk = -. LIli kv]I [il[i~k(VII. 16)2 Fi T k V1 1kj Il ,.kilI

By comparing the terms in (VII. 13,14,15) with the corresponding terms in (VII. 16), we deter-
mine the interconnection strengths (connection matrix, [Tij/lk where T is used for "transconduc-
tance") and the bias inputs (excitation term, [Ilitk where I is used for "current") as

56

[T4] = -A(1-ij)-B

A C Qlk (V.17)
Ili I T- B1-kC 2lt -

Notice that the quadratic terms in the energy function define a connection matrix and the linear
terms define input bias current.

b. Second LCT Network Layer

The second layer contains (2m +1)x(2D + 1) binary neurons representing the overall row
and column displacements between the two images. The horizontal displacement is discretized
by letting -D j _< +D. The vertical displacement is represented by index k. Vkj represents the
state of the kjth neuron. When Vkj is 1, the horizontal displacement is j and the vertical displace-
ment is k. When the network reaches stable state, there should be only one neuron on for the
entire layer. Since this is a 2D problem, a 4-dimensional energy function is required. Using p
and q subscripts for row indices and r and s as the column indices, such an energy function is
given by

E = AI - prqsJ + 4 ,Vpr - 1 -C , V'r Vpr (VII.18)p r qs pr Ir Jp

The first term provides row and column inhibitions, and the second term global inhibition, thus
assuring that only one neuron is turned on for the entire layer. The last term forces the neuron
corresponding to the object translation to turn on. The V' is the neuron output at the lth row of
the first layer. By summing up the neurons from the different rows at the same column for a
given kth plane (corresponding to xth row in the second layer), we can provide proper excitation
for each neuron in the particular location. For example, if I neurons in the jth column of the kth
plane in the first layer are all l's or nearly all l's (few O's), then the output of the neurons in this
column should have a minimal standard deviation. Thus, it is appropriate to add the sum of all
neurons in this column to the excitation term at pr position, where p indicates the corresponding 0
kth plane and r is the index to the column which corresponds to the most consistent estimate (the
column whose standard deviation is minimal). The general energy function for 4-dimensional
problems can be written as

1
E = JTpr.qsVpr~qs - UJYprVpr (VII. 19)0

2 psr q r

Through similar analysis as in the previous section, the weight connection matrix and the bias
input are derived.

Tpr,qs = -A (I -ps -B
[/ V'](VII.20)

I1,, = B + C P

As can be seen, the weight connection matrices for both layers are : .ed and independent of
image sequence frames. Thus, once the weight matrices are set, they c - be used for the entire 0
tracking task. In addition, the constant A, B, and C for both layers are also insensitive to the
image sequence frames. Motion estimation is carried out by a neuron evaluation. Each neuron

57 •

asynchronously evaluates its state and readjusts itself according to the sigmoid function. The net-
work proposed here calculates the motion based on each individual row of the image. Thus, the
size of the network representing the row is relatively small. This increases the convergent proba-
bility of the network. In addition, the output of neurons is not sensitive to their initial states. The
simulation results shown in the simulation section support the claims.

4.LCT SIMULATIONS

The ability of the ICT to track target translations was examined using the 90 degree plume image
of Fig.VII.3 . A 256x256 image was used without segmentation, resulting in a relatively large
tracking window. The object was translated in the image artificially to enable an accurate assess-
ment of the LCT capability. The translation results, contained in Table VI.1, illustrate that the
LCT accurately tracks the target. The erroneous results (denoted by ****) indicate the maximum
translation distance allowable. Likewise, the ability of the LCT to track target rotations and scal-
ings is shown in Table VI.3 . For this table, the input to the LCT was from the LSM computation
plane. The results are, again, very good for reasonable values of the scaling and rotation.

Table VII.I. LCT Translation Results for 90 Degree Plume
Actual Displacement Estimated Displacement

Ax Ay Ax Ay
3.0 5.0 2.817 4.768

-10.0 -4.0 -10.321 -4.279
15.0 -7.0 17.32 -7.351
9.0 -25.0

a. 0 Degree Missile Plume b. 15 Degree Missile Plume c. 90 Degree Missile Plume

Figure VII.3 ICBM Plume Images

58

0

Table VIL2. LCT Rotation/Scaling Results for 90 Degree Plume
Actual Estimated

AO (rotation in degrees) Ak (scale) AO (rotation in degrees) Ak (scale)
-7.5 1.00 -7.30 1.000

-11.0 0.72 10.69 0.672
-16.0 0.50

0

0

0

0

0

0

0

0

59

SECTION VIH

SINGLE PIXEL TARGET DETECTION

1. INTRODUCTION
Triple-indexed data is defined to represent a set of i; q 's, oi mhich two indices are spatial

coordinates (x, y), and the third is the time coordinate or discrete frame number. This is often
referred to as 3-D image or a time sequence. When a target of smal" size (< 10 m in length) is
remote from the sensor (.> 100 km), it is imaged at only one p :el or less in an image frame.
This type of target is referred to as a "pixel-sized" target. A time sequence of images containing
a pixel-sized target trajectory which intersects each frame at only one pixel is sampled by a sen-
sor. The position and the velocity of the target is unknown and the trajectory is arbitrary. Multi-
ple targets may also be present in the same sequence. Such image sequences can be obtained
from a space-borne sensor mounted on satellites or "smart" target seekers when, for example, an
ICBM releases warheads and decoys. For the task of intersecting the targets in mid-flight,
pixel-sized ;arget detection and tracking in real time is of essential importance.

The sampkl-d image sequence contains randomly drifting background clutter and may also
be contaminated by random sensor noise. The intensities of isolated noise pixels can become
significantly higher than that of the target pixel. The difficulties of the detection and tracking
task are clear: For pixel-sized targets, conventional pattern recognition methods fail for lack of
shape information; there is no spatially high concentration of intensities to detect around the tar-
get due to the same reason; some randomly distributed high-intensity noise pixels have the same
appearance as the targets in a frame. With little knowledge about the trajectories in the time
sequence, the :ask becomes extremely difficult.

This section presents a new pipeline method for detection and imaging of pixel-sized mov-
ing targets. The Pipeline Target Detection Algorithm (PTDA) detects targets with arbitrary tra-
jectories in a time sequence of images and simultaneously produces an image of the trajectories.
The sampled image sequence is corrupted with randomly drifting background clutter as well as
random sensor noise.

2. THE PIPELINE TARGET DETECTION ALGORITHM
With a pixel-sized target trajectory contained in the time sequence described in Sect. 1, the

only information for the detection lies in the trajectory continuity. The PTDA makes use of the
spatial consistency of intensity of a target within a short time period, resulting from the continu-
ous 3-D trajectory, to detect the existence of the target. Therefore, a necessary condition for
proper algorithm performance is: The trajectory of a target must be continuous and smooth.
Under this assumption, the target pixel can not make a big leap between two adjacent frames
with a proper sampling rate of the sensor. Along the temporal axis, the target pixel travels a
short distance in the spatial coordinates, one (or even a fraction of a) pixel, for example, at each
sampling cycle. The PTDA is able to distinguish the regular distributions of target trajectories
from the random distribution of noise, and to detect those of targets.

60

When a sequence of a few adjacent frames is accumulated and a column of small windows
equal to the number of frames is applied to each pixel location, as shown in Fig.VIII. 1, the distri- •
bution of pixel intensities within the windows is very different at different frame locations.
When a trajectory segment is contained in the windows, the distribution of intensities is very
consistent and regularly shaped. However, when the window column is at a location away from
a target trajectory, very few consistent high-intensity pixels can be seen in the space confined to
the windows and distribution is very irregular, if there is any. On the other hand, if one tries to
inspect the intensity distribution of the complete frames, little significance can be observed.
Based on this analysis, the PTDA focuses on a small neighborhood of a pixel for only a few
frames at a time, and detects the existence of a target by seeking consistency of pixel intensity
distribution within the confined 3-D space. With a sample sequence of images from the sensor,
the pipeline target detection system forms a pipe that consists of a few frames (typically three to
five), and pushes the time sequence of images one frame per step through the pipeline. At each 0
cycle, a column of windows (normally square-shaped) equal to the number of frames in the pipe-
line, is centered on each pixel' of the image frames in the pipeline, in parallel. The target pres-
ence within a window column should result in a higher intensity value than in the surroundings,
or than some threshold. This is detected by temporally summing the pixel intensities inside the
window column. When this "high concentration" of intensity occurs, the computation of inten-
sity centroid in the spatial-temporal sense will uniquely determine the center of the trajectory
segment inside the space confined to the windows. The PTDA detects one trajectory pixel per
cycle, and tracks the entire trajectory inside the time sequence at the sampling rate.

a. The Pipeline Structure 0

* Pipeline
A fixed length FIFO (first-in-first-out) set of n NxN image frames, and a two-dimensional
array of processing elements (PEs) form the pipeline. The dimension of the array is NxN,
and there is a PE at every pixel location. At each frame cycle, a frame is discarded from
the bottom of the FIFO and a new one added to the top. This process is referred to as 0
"updating the pipe".

* Processing Element (PE)
A PE is a local processor for one pixel location capable of the following functions: 1) alge-
braic and logical functions; 2) image pixel value storage; 3) neighborhood connections
and communications in the space defined by the Temporal Window Column. 0

* Temporal Window Column (TWC)
A TWC is a column of n windows of dimension wxl (generally w = 1) in the pipeline that
are always centered in the same positions in each frame of the pipe. There is a window for
every pixel of a frame in the pipeline, and n, the number of windows in the column for a
given position (i.e. pixel), is equal to the number of frames in the pipeline. •

b. The Continuity Filter

One of the major difficulties to overcome is to reduce the effect of noise in the time
sequence. When some noise pixels i.th high intensity levels are distributed close together both
spatially and temporally in the pip,: ie, their effect on the temporal window summation is 0
significant and can result in false de. .,ion by the algorithm. Notice that these'pixels do not
have to be continuously distributed in .. jacent frames for their contribution to the PE operation.

61

Frame sex

"--'- -/ '- -- '- Image f-t ne

Tagec Frame TIe Pipeline

Figure VIILI The window-cent-id method

Input frt m . F il -re f tl n s

n I

Discarded frames; ----------

AP

Figure VJIL2 AND-Pipe operadons

62

In order to distinguish these noise pixels from target pixels, the property of temporal continuity
of target, trajectories has to be considered. The continuity and smoothness constraint of target 0
trajectory restricts the pixels in adjacent frames to stay within a small neighborhood of each
other. In other words, if there is a target pixel in the ith frame, the (i+l)th frame should also
have a target pixel spatially close to the one in the ith frame. On the other hand, it is not very
likely for two high-intensity noise pixels in a pair of adjacent frames to have such a property.
The Continuity Filter (CF) is designed to use the continuity property of the target pixels in adja-
cent frames and the randomness of noise pixels to filter out the noise through the A-AND opera-
tion.

We define an Analog-AND (A-AND) function for grey-level algebraic operations. A func-
tion f(g(.), A), where g(.) is a grey-level function and A E (0, 1), is define as A-AND, if it
satisfies

g(.) ifA =1
f(g A)= 0 ifA=0 (VIII.l)

The CF consists of a pipeline of two frames, called AND Pipe (AP). After initially pre-filling the
AP, the CF operates in the following fashion (Fig. VIII.2):

1. Update the AP

2. Generate local masks: In parallel for every pixel in the bottom frame of the AP, if there is
an "on" pixel, i.e., the intensity is higher than some threshold (determined by possible target
intensities), set the corresponding position and pixels in a certain neighbor area (e.g. 3x3
area) in a mask frame (MF) to logic "1"

3. A-AND each pixel of the MF in parallel with the corresponding grey-level pixel in the top
frame of the AP, and so generate a filtered frame (with grey-level intensity)

The CF produces one filtered image frame per frame cycle from the bottom of the AP in the 0
pipeline fashion. As result of the filtering, target trajectory pixels remain unchanged in the
sequence because of the consistency of the distribution. Most noise pixels, on the other hand,
are filtered out as long as the high intensity-level noise pixels do not stay consistently in the
same areas in adjacent frames. Notice that the filtered frames are still grey-level images with
most of the frame area having intensity level 0 except for some isolated blocks around target
pixels.

c. The Algorithm

I. Construct a Test Pipe (TP) of a sequence of n image frames, an AND Pipe (AP) of
two image frames, and a single blank frame called Target Frame (TF), Fig.VIII.3

II. Initialize the AP in two frame cycles by adding a frame to the top at each cycle

III. Initialize the TP. In n time steps,

1. Update the AP

2. Apply the Continuity filter in the AP as described above 0

3. Add a frame from the output of the AP to the top of the TP

63

Target Frame AND Pipe New frame

Discarded Test Pipe Filtered frame

Figure VIIL3 Operation flow of the PTDS algorithm

AA g

go

Figure VJJL4 A-AND function

i ll | I . . •

IV. At each frame cycle, (refer to Fig. 4)

1. (a) Update the AP
(b) Apply the CF in the AP

2. Update the TP by adding the output frame of the AP to the top of the TP

3. At each local PE in parallel,
(a) Sum the pixel intensities inside 3-D space defined by the TWC: 0

n w/2 1/2Ai = Y, Y, I p (Xi +x, Yi+ y, k) (VIII.2)
k=1 x=-w/2 y=-1/2

where (Xi, Yi) are the center coordinates of TWC at time i, and n, w and 1
are the dimension of the TWC in the Test Pipe
(b) If the sum is greater than a threshold (determined by possible target
intensities), then go to step 4, else go back to step I for the next time step.

4. Compute the intensity centroid (i,) in parallel in the PEs that have 0
detected high intensity values at time step i:

n w/2 1/2
i p S- ,E (Xi + x, Yi + y, k) (Xi + x) (VIII.3.a)

k= 1 x-w/2 y=-112

1n w/2 1/2Y, Y, Y, p (Xi + x, ¥i + y, k)(Yi + y) (VIII.3.b)
A x---w/2 y=-1/2

Record the centroids in the TF 0

5. For detected intensity centroid (xi, Yi) in the TF, find Euclidean distance
between the current position and the previous time position, and compare it
against a threshold:

if I I i-Xil <ii AX (11, 5) accepted

arid I I -Yi-1 I I < AY to be the trajectory pixel (VIllA)

else (i, Yi) not accepted

6. The instantaneous velocity of the target can also be determined by

Ax=ii-i-I and Ay=Yi-i-l (VIII.5)

In the algorithm, steps I to IV.4 directly involve the detection of trajectories. As a conse- 0
quence, possible target trajectories are reconstructed and tracked in the single frame TF. Step
IV.5 is an additional means of keeping track of the multiple target situation, so that the system

65

knows at any time the number of candidate trajectories currently detected. The result of step
IV.6 provides useful information for tracking. Notice that the steps of the algorithm are exe-
cuted at each PE of the pipelines simultaneously. The PTDA eliminates slowly drifting back-
ground clutter and most of the random sensor noise effect and detects and tracks target trajec-
tories of arbitrary shapes. Stationary and directly oncoming objects are recorded by the algo-
rithm stationaryly (equivalent to a straight line trajectory parallel to the time axis). These "tra-
jectories," hence, are fixed at one point in the Target Frame.

If a conventional pattern recognition algorithm such as the Hough transform is applied to
the TF, the types of trajectories can be easily identified, e.g., straight lines, parabolas, etc. An
ANN implementation of the Hough transform has been developed to apply to this algorithm as
the trajectory recognition stage. Based on the result of this recognition compared with prior
knowledge of the target trajectory (through target trajectory analysis), decisions can be made on
whether or not a trajectory is of interest.

3. IMPLEMENTATION CONSIDERATIONS

One of the most important characteristics of the PTDA is its global parallelism. At each
sampling cycle, a new frame from the sensor is fed to the top of the AP, and at the same time, a
used frame is taken out from its bottom. The CF is then in process. Simultaneously, a filtered
frame produced by AP from the previous cycle is input to the top of TP, and at the bottom a
frame is discarded. The remaining steps of the PTDA are then applied. The algorithm tracks
one pixel per cycle on the trajectories except for the first few cycles needed to pre-fill the pipes.
All operations of the algorithm are also parallel-distributed in local PEs, but globally synchron-
ized. Each operation of a PE is a localized simple operation (confined to a small 3-D space
defined by the TWC), but synchronized in parallel with the same operation of the neighboring
elements. Therefore, each operational cycle is expected to be very short and compatible with the
sampling rate of the sensor. The parallelism of the algorithms ensures the timing requirement of
real-time tracking tasks.

The PTDA can be implemented by any parallel distributed architecture. Good examples are
the Pyramid type structure and the Connection Machine structure which have neighborhood
operation capabilities. Artificial Neural Networks (ANNs) are also a good possibility for imple-
mentation of the algorithm. In fact, a back propagation network implementation of the algo-
rithm has been developed by the authors with promising preliminary results.

4. SIMULATIONS

Simulations have been done with synthetic target trajectories in real image sequences. The
original sequence contains slowly drifting background clutter, as shown in Fig.VIII.5(a). Two
pixel-sized trajectories were generated and injected into the sequence. One of the targets moves
in a 3-D linear fashion, while the other follows a 3-D parabolic trajectory. Two types of pseu-
dorandom noise were then superimposed to the sequence. Pepper-and-salt type noise with
saturated pixel intensity (255) was generated at random positions of uniform distribution in a
frame. Different noisy sequences were obtained by adding different number of noise pixels to
each frame. The reason why the intensity of noise pixels was set to a maximum value that out-
numbered the target intensity was to exaggerate the noise effect and to simulate situations in
which the images are dominated by noise intensities and the target is barely detectable. Gaus-
sian pseudorandom noise was also generated and superimposed to each pixel location in each
frame. Different variance values of Gaussian function specified noise levels of the noisy

66

(a) (b)

--j
(C) (d)

(e) (f)
Figure VHI.5 Simulation results by the original system architecture with salt-noise

sequences. (a) & (b) SNR = -34.0 dB. (c) & (d) SNR = -34.1 d13. (e) & (f) SNR = -34.2
dB,

67

sequences. The parameters of the algorithm were set as follows: The TWC size for each PE of
the Test Pipe is 3x3x3; the size of the masks in the AP is 3x3. All simulations were run on a
Harris HCX9 super minicomputer. To demonstrate the simulation results, Colorado and Lexi-
data video systems supported by a VAX 1 lf/750 machine were used to display images.

Successful results were obtained with sequences of signal-to-noise ratio well under -30 dB.
The signal-to-noise ratio of the sequences was defined as the the decibel value of ratio of the
sum of all target pixel energy to the sum of all noise pixel energy in one frame:

y. 12 I te (target pixels)
SNR = lOlog (VIII.6)'1 2 I ne {target pixels]

With Gaussian noise, the signal-to-noise ratio is therefore defined as:

g.2 I tE (target pixels)
SNR = 10log- (VIII.7)g (42it + o) I n((target pixels)

where tg, and on are the mean and variance of the Gaussian noise, respectively. Some examples
of both types of noisy sequences and the corresponding detection results are shown below. Fig-
ure VIII.5 shows one frame of the pepper-and-salt type noisy sequence and the result of the
detection described by the TF representation of the algorithm. One frame of the Gaussian noise
sequence and the corresponding TF detection result are shown in Fig. VIII.6. Both examples
demonstrate satisfactory detection when the time sequences were mostly obscured by the noise
intensities. With lower noise levels (SNR > -34 dB), the system tracks the trajectories with
almost no noise effect, while for some very high noise situations (as shown in the examples), the
TF contains various noise pixels. However, this should not affect the trajectory type
identification. Algorithms like the Hough transform can successfully recognize the trajectories
with little effect due to the residual noise.

5. NEURAL NETWORK IMPLEMENTATION OF THE PIPELINE SYSTEM
The SPTD algorithm is based on short term patterns that must be followed by the trajec-

tory. It is well known that artificial neural networks are very well suited for pattern recognition

and, consequently, the used of an ANN in the centroid tracker part of the system should improve
its performance.

a. BPN Implementation of Centroid Tracker
The centroid tracker can easily and efficiently be implemented by means of a backpropa-

gation neural network (BPN) . A BPN is ideally suited to recognize patterns, and since the cen-
troid calculator is essentially a pattern recognizer, the performance of the algorithms should be
enhanced by its use.

In the original CT algorithm, PE functions rely on the assumption that consistent distribu-
tion of target pixels of a continuous and smooth trajectory will result in a high intensity concen-
tration inside the TWC. So the algorithm does not directly examine the continuity and smooth-
ness. Rather, it measures the condition indirectly by examining the consequence. In fact, the

68

(a) (b)

(c)(d

(e)(f
Figure VIII.6 Simulation results by the original system architecture with auciitive Gaussian

noise. (a) & (b) SNR = -33.98 dB. (c) & (d) SNR = -34.08 dB. (e) & (f) SNR = -34.12
dB.

69

algorithm is invariant to the actual pixel distribution, but only sensitive to the intensity concen-
tration. As the result, more false alarms may be expected, since invalid pixel distributions may
also result in a high concentration of intensity in the TWC. For this reason, a pattern recognition
scheme is necessary for better PE performance.

Since a BPN implementation incorporates a pattern recognition scheme in its function, a PE
would actually seek pixel distributions of the continuous and smooth trajectory patterns. Conse-
quently, it is more discriminating against noise, and PE's implemented by a BPN may conceiv-
ably achieve higher noise tolerance, and so experience lower false alarm rates than the original
CT algorithm. This constitutes the basic motivation of the implementation. Moreover, upon
studying the paradigm, more significant advantages can be found for a BPN implementation: fast
response, homogeneous PEs (all equal), hence simplicity of design and training, etc.

b. Test-Pipe Design
With a BPN implementation, each PE is made of a two-layer feed-forward network.

Counting the input units as a separate layer, it is, in fact, a three-layer network with an input
layer, a hidden layer and an output layer, as illustrated in Fig. VIII.7 Consequently, the TP con-
sists of an NxN array of PE networks of homogeneous structure and functionality. The network
input is taken from the PE's TWC. Hence, it is of dimension Dxwxw.

The input layer consists of all the data nodes connected to the PE which are within the
TWC. So there are Dxwxw input units in the layer, 27 for the 3x3x3 TWC. Each input unit is
connected to a particular pixel in the TWC in a sequential order. The input layer is reloaded in
every cycle when the TP is updated with a new image frame. Each input signal is a continuous
value within 10, 1] by normalizing the input grey-level intensity (between 0 and 255) by 255.

The output layer consists of one unit that produces positive signals between [0, 11. It
corresponds to the single output of the PE. It is then thresholded to be either "high" or "low"
which sets or resets the corresponding pixel of the TFB indicating the position to be a positive
centroid point or otherwise. The threshold value depends on the convergence of the network and
is determined by the training process. In general, the signal value of the output unit has a large
separation between positive and negative responses when the network converges. Hence, the
threshold value is fairly easy to choose.

A hidden layer with 21+1 units has been adopted for the PE structure, I being the number of
input units. Two connection geometries have been considered for the PE structure: a fully con-
nected network and a network with receptive field connection. The fully connected network is
as described before, one in which each unit is connected to every unit in the layer immediately
below it. In this geometry, the activation function of a unit is simply a weighted sum of all the
output signals of the lower layer, given by

N 1 < j < 55 for hidden layer
aj = Ywjioi{ j = for output layer (VIII:8)

i=1I

.here N = 27 for the input layer, and N = 55 for the hidden layer; oi is the output signal of the
input or hidden units with layer j being the hidden or output layer.

70

Input layer Hidden layer Output node

Figure VIIL7 BPN-implemented PE structure

0

71

c. Network Training
The learning procedure for the PE network is based on the generalized delta rule, as

described in section VIII.5.a. It basically involves presenting a set of input and output vector
(pattern) pairs to the network. After forward propagating an input vector to the output, the sys-
tem computes an error vector (a scalar in the PE network due to the single output line) and pro-
pagates it backward to the hidden layer according to which the weight values are updated. This
section presents details of the learning process in terms of the weight adaptation, training set,
training procedure, and some important training issues.

(c.1) Weight Adaptation
The weight adaptation rule chosen includes a momentum term. Let oi, oj and Ok denote the

output signal of an input unit, hidden unit and output unit, respectively, where i r TP, 1 < j < 39
and k = 1. Then, for the weights connected to the output unit,

Awkj(t) = 1l8koj + O.AWkj(t - 1) k = 1, 1 <j < 39 (VIII.9)

The error signal 8k is given by

5k = Ok(- ok)(dk - Ok) (VIH. 10)

where dk is a desired output signal, and dk = {0, 1).

Between the hidden layer and the input layer,

Awji (t) =T5j Oi + ~wji (t - 1) 1!_<j <39,iE TP (VIII. 11)

where the error signal Sj is given by

Sj = o(1 - oj)8 kwkJ k = 1 (VIII. 12)

In practice, a is generally chosen to be greater than 1 for faster convergence. In the actual
training sessions, the learning rate i" = 0.4, and the momentum gain C = 1.6 have been used.

(c.2) Training Set
The training set contains patterns of 27 digits, corresponding to 27 pixels in the TWC.

Each pattern thus consists of three 3x3 squares of integer numbers representing grey-levels in
digital image, each of the squares corresponding to one of the windows. The pixel intensity is of
binarized values of (0, 200), indicating either low or high intensity level. The high intensity is
selected as 200 out of maximum intensity value of 255 based on the mean target intensity used
in the simulations. The desired output is of binary values (0, 1). "1" indicates that the output
unit is on and represents a positive response associated with input patterns in the positive class.
On the other hand, "0" indicates the output unit is off and represents a negative output response
associated with negative input class patterns.

The selection of training patterns is very much task dependent. For different kinds of target
trajectories, different training sets should be employed. The reason is that adequate information
about features of different target trajectories should be emphasized in selecting positive training
patterns. The analogy is true, too, for the negative training set where different features of noise
distributions need to be emphasized. Therefore, it is highly recommended that the user of this

72

Pattern 1 2 3 Class

1 0 -- positive

2 - - - 0 - positive

-0 - - - poitv

5 - - - - 0- - - - positive
3 - - -- posve

-0

4 - - - - - - positive

85 -0- - - - posive

0- - -- . . . psv

9 0 positive

6 - - - - 0 - - - - positve

Figure VIII.8 Straight-line pattern vectors, 0: high intensity, low intensity.

0--0

730

Pattern t - 1 t t + 1 Class

0-- -0- -- 0
1 - - - - - - - - - negative

2 - - - 0 - - negative

3 - - - - negative

4 - 0 0 negative

Figure VHI.9 Examples of negative class patterns, 0: "on" pixel, - "off" pixel.

network study the possible target images, and create different training sets for different target
situations for better performance of this system.

Figures VIII.8, 9 and 10 shwo examples of training patterns, some correponding to valid
trajectories (positive) and some to invalid ones (negative.)

Figure VIII. 11 shows simulation results for a salt-pepper type of noise using the BPN.
Compare these results with those in Fig.VIII.5.

d. Hardware Implementation Issues
In this section, the hardware requirements for the BPN implementation of the TP-PE's are

considered. With the BPN implementation, each TP-PE consists of a BPN structure, instead of
the ALU-based digital processing element described in the previous section. As was discussed
in Section VII.5.a, the BPN is basically made up of a network of connection weights and
weighted sum and sigmoid units. When implemented in hardware, these function units may be
realized by specially designed analog circuits.

The input layer is composed of 19 units, each connecting to the respective data nodes in the
receptive field of the 3x3x3 TWC space. Each input unit is only a data buffer containing a nor-
malized pixel value that can be implemented by a fixed-length register. So, the input layer con-
tains a register space of 19 such registers.

The hidden unit (or the output unit) basically consists of a summing circuit which imple-
ments the summing operation and a sigmoid circuit that realizes the sigmoid function. The only

74

0

Pattern t -1 t t + 1 Class

- - - positive

2 ... - - positive

0--

3 - negative

Figure VII.1O Training pattern examples

difference between a hidden unit and an output unit is the number of the input signals to the
summing circuit (implemented with summing amplifiers), 19 for the hidden and 39 for the out-
put unit. There are 39 hidden units and one output unit in the network. Therefore, each PE con-
sists of 40 summing circuits and 40 sigmoid circuits.

A connection weight of the BPN can be implemented by a resistor. In the network, there
exist 741 (19x39) weights between the input and hidden layers, and 39 (39xl) weights between
the hidden and output layers. Thus, there are a total of 780 weight resistors in the network.

In summary, a PE network consists of 40 sigmoid circuits, 40 summing circuits, 19 regis-
ters (data buffers), and 780 weight resistors. At the TP array processor level, each number will
be multiplied by the number of PE's in the array due to the homogeneous PE structure. Table
VIII. 1 summarizes the results in terms of the general NxN PE structure of the TP corresponding
to NxN image frames. If, for example, 128x128 image frames are considered, there will be
approximately 655,000 sigmoid circuits, 655,000 summing circuits, 311,000 registers, and
12,700,000 weight resistors required for the TP array processor. These are very large numbers.
However, when several PE's are integrated into one VLSI chip and the TP integrated at the
board level, the system is believed to be implementable with current technology.

Table VII.1 Hardware requirements for a NxN TP

Sigmoid Circuits Summing Circuits Registers weight resistors 0

40N2 40N2 19N2 780N 2

7S

6. CONCLUSIONS
This final report has described the design and development of a pipeline system, i.e., the

Pipeline Target Detection System, for the real-time task of single-pixel target detection and
tracking. An original method has been designed for the problem from the task specifications of a
space-based ICBM-interception problem, based on which algorithms and consequently a system
implementation have been developed.

76

SECTION IX

HOUGH TRANSFORM SINGLE PIXEL-TARGET DETECTION

1. INTRODUCTION
Once a target trajectory image is obtained from the Single pixel target trajectory detection

system, it is necessary to identify valid targets and to determine the coordinates of the target in
the last frame. This is done by means of a system based on the Hough transform. We have
developed an original mapping scheme that allows analog parallel implementation of the Hough
transform, as well as an ANN implementation of the peak detector.

2. PARALLEL MAPPING SCHEME
The parameter plane used in this mapping scheme is based on the parameterization pro-

posed by Jain et al.[l] in which three sides of the image plane are used for the so called cir-
cumference parameterization. The two parameters used are: slope and line intersection with the
upper, right and lower sides of the image.

This parameterization has the advantages of being uniform in quantization errors and to
have a bounded range of values of both parameters 0 and il.

a. Determination of il Values
According to the definition, in the theta-circumference parameterization, we have to find

values of 1i for 0° < 0 : 1800. The angle 0 varies form 00 to 1800. In this way the three sides of
the image plane are covered. Formulas for ranges of 0 from 0 to 900 and 90 to 1800 have been
developed in which the value of 1i is also taken into account.

b. Mapping Scheme

The mapping scheme allows the transformation from image plane to parameter plane to be
done completely in parallel.

Figure IX.1. shows the mapping structure. The image plane can be viewed as many "0-
layers." Each "layer" corresponds to a value of 0 (discrete value of slope). A "layer" is a map-
ping of the image plane to a cell of parameter plane in which every pixel of image plane is
assigned a value of 1i in parameter plane. The figure also shows three lines in the image plane,
from three 0-layers: 0--450, 0=0, 0=1350. A solid line indicates a line with slope equal tothe 0
value of the layer. All pixels in the image plane that belong to a line are connected, using a sum-
mer, to a cell in parameter plane with the (li, 0i) value of that line.

If a line with this (%i, Oi) appears in the image, for example (1l=2, 0--450), the (%, Oi) cell
in the parameter plane will have (in this low resolution example) a count of eight. For other lines
like (li, (1=13 , 0=900) and (71=6, 0=1350), the count produced in the same (%, Oi), at (1"=2,
0=450) cell, will be very low (one, in this example). In addition, the figure shows that for 0=900
and 0=1350 "layers," the line at (1=2, 0=450) contributes a count of one to the (r1=13, 0=90)
and (1i=6, 0=1350) cells.

77

Image Plane NxN

00

Layer 0000 0 0
0=450 000,0 0 0

000000000~
45 000000??00 0 45 90 135 180

070 Q 0 0 0 00P?

0 0 011000 0 00
Layer 0000A00000 -

=9 0 0 1 LI 0

7 ooooooo~o 1
00 000 00060G
0000 00

0000 00

270000000 0?8 27-

0 2 6 %- - MegxA(f parameter plane

Layer 0000 fY60
0=1350 000 6oooo For each desired value of 0there is

000 0bk0000
(~0 0 -0-V-3 13 a map from image plane to parameter plane

0z 000000.00 as shown specifically for 0 =40*,
135!000 000 0 0,0 900 and 1350.
0000000000

0000000 000 Each celin parameter plane is asummer.

Figure XI. 1. Mapping Scheme.

c. Connection and Amplifier Requirements for Mapping Scheme
To implement this architecture with analog circuitry, every image point should be con-

nected to an amplifier corresponding to each value of 1l in each 0 "laytr". If th - resolution of the
image plane is NxN and the resolution of parameter plane is Mex1, theoretically we need
NxNxM9 connections if all pixels in the M9 "layers" were used. Each node in parameter plane is
implemented by means of an operational amplifier summer. In total, MOXM,, amplifiers would
be needed for parameter plane.

78

3. PEAK DETECTION
The next step in the line detection process involves identifying the peaks and their location

in the parameter plane. The time needed for detecting peaks should be comparable to the time
needed for transforming the image plane to the parameter plane. Since the latter is done in a
parallel manner, a parallel solution to the peak detection process is needed if the two times are to
be comparable.

Use of a straightforward peak detection scheme with the existence of spurious peaks would
result in te detection of non-existent lines. Thus there is a need to eliminate the spurious peaks
from the parameter plane. This elimination is done by a combination of (a) Thresholding, (b)
Main windows, (c) Overlapping windows. The scheme proposed for peak detection is shown in
Fig.IX.2.

Thresholding eliminates peaks that have values less than some specified threshold. The
threshold value is generally equal to the minimum line length that is to be detected and is appli-
cation dependent. Typically, thresholding eliminates a majority of the spurious peaks.

a. Main Windows

i Windows

" ' ,,,H&T Network

Image Plane "

- /

Main Windows

Parameter Plane Peak Detection

Figure IX.2. Line Detection Scheme.

79

When input images have lines of varying length, the threshold value is set to the minimum
line length. However, the HT process produces spurious peaks that may have values close to the
actual peak and greater than the threshold. Hence, these peaks remain after thresholding. The
actual peaks may be distributed across the parameter plane and may have widely differing
values.

A peak detection scheme that uses the entire parameter plane as its single input would
result in only the longest lines being detected. Thus, it is necessary to divide the parameter plane
into subsections called windows, and apply the peak detection process within each of these sub-
sections. Windows of size nxn start at 0--00 and i1=0 and do not overlap.

For the parameter plane of size 382x60, there are 900 windows of size 5x5 and 12 windows
of size 7x5. However as explained previously, certain areas in the parameter plane always have
zero count and no windows are needed in this areas. This decreases the number of windows 0
needed to 584 of size 5x5 and 7 of size 7x5.

b. Hoptield and Tank Network Approach for Peak Detection

Peak detection within each main window can be done in a parallel manner using an
artificial neural network. The network must be capable of detecting peaks of arbitrary value and 0
provide as output the value and location of the peak. The Hopfield-Tank network provides an
efficient (both in time and space) implementation of such a peak detector.

A Hopfield-Tank peak detector used in the calculation of centroids of images has been
developed. This peak detector is useful for our application an will be used in this system also.
The structure of this network and its energy function are the same as proposed by Hopfield-Tank 0
121. The neuron however uses a one-sided shifted sigmoid function, see Section IV of report E.
Susbsystem Report-Algorithms.

c. Overlapping Windows
As described in the previous sections, the parameter plane is divided into main windows

that have fixed positions. Peak detection using the Hopfield-Tank network is done on each of
these main windows. However, it is possible that a peak corresponding to a line has its neighbor-
hood area spread over into the adjacent windows where the spurious peaks may be detected as
lines.

In order to overcome this problem, a scheme of overlapping windows is used. While the
main windows have fixed positions, an overlapping window is centered about a peak detected in •

a main window. Consequently, overlapping windows have variable position and should be
implemented in software. This will not represent a considerable increase in processing time,
because the number of overlapping windows is small (typically less than ten).

Using a 5x5 overlap window centered about an actual peak, produced the best results. In
order to treat all peaks similarly, an overlapping window on the left or right edge of the parame- 0
ter plane is wrapped around onto the opposite edge.

The combination of analog hardware implementation and software overlapping windows
could be implemented as follows: the parameter plane can be shifted out of the chip, for example
row by row, into some disk file or directly into memory under program control. The peak loca-
tion information is obtained from the Hopfield-Tank network. At this stage the overlapping win- 0
dow can be applied in software.

80

...... 0 .

4. TARGET LOCATION
The output of the Single Pixel Target Detector (SPDT) is an image containing possible tra-

jectories and noise pixels. The Hough Transform (HT) extracts valid straight line trajectories
from this image.

It remains to determine what point (i.e., pixel) corresponds to the actual target (or targets
for more than one valid trajectory.) This information is not directly provided by either of the two
algorithms.

The SPTD, however, works with a sequence of frames and pixels kept in the last frame and
their coordinates are available.

From the HT output we know the equations of the detected straight lines trajectories. If we
replace all the pixels selected in the SPTD last frame in all these equations, only the equations to
which the pixels actually belong will produce the same "1" value than the trajectory detected in
the HT (using the formulas developed in section.2). This, then, determines the target-pixel loca-
tion at the instant of time corresponding to frame "n", the last frame in the sequence. This pro-
cedure is implemented in the SPTD program.

5. VLSI IMPLEMENTATION ANALYSIS
This section provides a brief analysis of the hardware needed for the parallel HT implemen-

tation presented previously. The hardware required for implementation of the parallel HT is
mostly composed of operational amplifiers (op-amps) and resistors.

a. Processing Elements for the Mapping Scheme
Operational amplifiers are used in two phases of the system: mapping from image plane to

parameter plane and the Hopfield-Tank peak detectors. The op-amp configuration used is shown
in Fig. IX.3. From the figure, and ignoring the diode for the moment, we have:

L VA VA VA] V1 V2 V n]"R1 R2 n JR1 R2 -inR.

where,
RB

VA= R VTRA +RB

Select
R=R1 =R2 = &... R =Rf,

then
Vo = VA(I+N)-(Vl+V 2+....+Vn)

Now considering the diode, when the sum of the input voltages is greater than VA(I+N), the
diode remains cut-off and the desired output, V0, is available. When
VA(I+N) > (VI+V 2 +....+Vn), the diode is turned-on and V, = 0.8. The op-amp is short-circuit
protected and the current through the diode is limited. However, the threshold value VA(I+N)
depends on N, the number of connections to the summer. This number may be different for dif-
ferent (1l,0) pairs. In order to provide a fixed threshold for all the summers, the voltage VA is
derived from the resistor pair RA and RB with the RA value being chosen such that the product

81

V2 R

Vo

RV + Output
Vn "Vn---->

RA

RB '

Figure IX.3. Parameter Plane Summer with Thresholding.

VA(I+N) remains constant for different values of N. This scheme provides the same threshold
for all summers.

b. Connections, Amplifiers and Feasibility Study 0
The parameter plane mapping would require a maximum of MoxM n processing elements.

However, as explained in section 2, certain kimO) combinations will always have zero count and
no summers need be connected to these cells of the parameter plane.

For this application, N = 128, M0 = 60 (three degree theta increments), M =- 382.

The experiment described in section 2, showed that 7,818 cells of the parameter space have 0
zero count. Thus, the actual number of summers needed is:

(382x60)-7,818 = 15,102.

The window system generates 912 windows of which 900 have a size of 5x5 and 12 have a 0
size of 7x5 cells of the parameter space. A Hopfield-Tank network is used for peak detection in
each of the above windows. However, as explained before, many of the parameter plane cells
have fixed zero counts and need not be connected to the peak detection system. Hence, the peak
detection system needs 15,102 neurons. The neuron is the same than one used in Centroid Calcu-
lation, and uses a single op-amp.

82

Therefore, the total number of op-amps needed by the two phases is:

Number of op-amps in mapping scheme = 15,102
Number of op-amps in peak detector = 15,102

Total = 30,204 op-amps
The number of weights (resistors) needed is much higher. For the mapping scheme, it is

about a million and for the peak detector about 400,000. This means that a VLSI implementation
is not possible yet, because current technology aljows a chip area of 4 cm 2 and the area needed
would be 10 cm 2 . A multiple chip implementation is certainly possible. The mapping and peak
detector schemes may be distributed across the minimum number of chips needed to accommo-
date the hardware. The calculations done previously indicate that very few chips would be
needed.

Another possibility is the use of wafer-scale integration. The process is prone to fabrication
defects, in other words the yield is low. This problem may be solved by using redundancy. If the
wafer contains "n" circuits, only k < n will actually be needed.

6. SIMULATIONS
The algorithm has been extensively simulated with both synthetic images and with trajec-

tory images provided bu the SPTD system. A full report is given in C. Software test-Simulations.
In this report we will limit ourselves to a couple of significant example. Figure IX.4 shows an
image with five synthetic trajectories. Notice the crossing of trajectories and the "bad" location
of the vertical trajectory near the edge of the image. Table IX. 1 shows the result of the Hough
transform for this image. Tables IX.2(a),(b),(c) and (d) show, respectively, the accumulator
result, the accumulator after thresholding, after main window algorithm and after overlapping
windows for the horizontal (i.e., 90 8) line. The final result is a peak at 0=90 8 and T=156, i.e.,
the correct result. The results for the other lines are also correct, although their windows are not
shown.

Figure IX.5 is a noisy input image with a sraight line trajectory and a curved one. This
image is generated by the SPTD system. The Hough algorithm, as implemented here, only
recognizes straight lines. The interesting fact is that the curve has been recognized as three
straight line segments, as the result in Table IX.4(c) shows. The peak at 0=135 8 and 1 = 127
corresponding to the straight line, is correctly detected but is not shown in the tables.

83

Image G~iNP. Five different lines

Figure IX.4 Synthetic image with five lines

Figure IX.5 Noisy trajectory output of SPDT system0

34

Table IX.1 SIMULATION RESULTS OF HOUGH TRANSFORM

Line Theta (0) Eta (Ti) Peak (points)

000, 1=4, 00 4 41

peak=39
30 1,2 21,21

0=450, i1=2599 450 259 55
peak=55

0=900, 11=156, 870 157,158 21,20
peak=48

900 156 49

930 154,155 21,21

0--=-17 0 , i1=48, 1170 46,47 16,14
peak=24 (Actual
line at 0= 116.570)

0=-1350 , 1i=18, 1350 18 19
peak=19

1380 17 10

0=-1790, 11=5, 1770 6,7 21,21
peak=42 (This is
not a true line, it is
due to the line at
0=0")

Simulation Parameters:
Input image GINP.
Five different lines.

85

Table IX.2 SIMULATION RESULTS OF PEAK DETECTION SCHEME

'i75 78 81 84 87 90 93 96 99 102 78 81 84 87 9093 9699 102

1510 0 1 3 3 1 2 7 8 6 15110 0 0 0 0 0 0 0 0 0
1520 0 3 3 3 1 2 11 8 7 15210 0 0 0 0 0 0 0 0 0
1530 0 2 3 2 1 2 12 8 6 153 0 0 3 0 0 0 0 0 0 0
1540 0 3 3 2 1 21 11 8 6 1540 ,- 0 0 0 0 21 0 0 0
1550 2 4 3 2 1 21 12 8 7 1550 0 0 0 0 0 21 0 0 0
1560 4 6 8 11 49 12 7 6 5 15610 0 0 0 0 49 0 0 0 0
1570 7 9 13 21 2 2 2 22 1570 0 0 13 21 0 0 0 0 0
1580 5 9 12 20 2 2 2 2 2 1580 0 0 0 20 0 0 0 0 0
1590 7 10 11 1 2 2 1 2 1 1590 0 0 0 0 Q 0 0 0 0
1600 8 8 11 2 2 2 2 1 2 1600 0 0 0 0 0 0 0 0 0
1613 8 9 8 1 2 2 2 2 2 1610 0 0 0 0 0 0 0 0 0
1625 7 10 2 1 2 2 2 2 2 1620 0 0 0 0 0 0 0 0 0
1634 7 9 2 2 2 2 2 2 2 163 0 0 0 0 0 0 0 0 0 0
1646 7 2 1 2 2 2 2 2 2 1640 0 0 0 0 0 0 0 0 0
1656 9 3 1 2 2 2 2 2 1 ,65 0 0 0 0 0 0 0 0 0 0
1666 5 3 1 2 2 2 2 2 2 1660 0 0 0 0 0 0 0 0 0

Table $.1.a Simulation Results GINPO. Table $.l.b Simulation Results GINPO.
(0 = 90", -q = 156, peak = 48). (9 = 90*, 71 = 156, peak = 48).

Parameter Plane Representation. After Thresholding (threshold = 12). -

Three Degree 0 Increments.

_ 75 78 81 84 87 90 93 96 99 102 7 5 78 81 84 87 90 93 96 99 102

1510 0 0 0 0 0 0 0 0 0 1510 0 0 0 0 0 0 0 0 0
1520 0 0 0 0 0 0 0 0 0 1520 0 0 0 0 0 0 0 0 0
1530 0 0 0 0 0 0 0 0 0 1530 0 0 0 0 0 0 0 0 0
1540 0 0 0 0 0 21 0 0 0 1540 0 0 0 0 0 0 0 0 0
1550 0 0 0 0 0 0 0 0 0 1550 0 0 0 0 0 0 0 0 0
1560 0 0 0 0 49 0 0 0 0 1560 0 0 0 0 49 0 0 0 0
1570 0 0 0 21 0 0 0 0 0 1570 0 0 0 0 0 0 0 0 0
1580 0 0 0 0 0 0 0 0 0 158 0 0 0 0 0 0 0 0 0 0
1590 0 0 0 0 0 0 0 0 0 1590 0 0 0 0 0 0 0 0 0
1600 0 0 0 0 0 0 0 0 0 1600 0 0 0 0 0 0 0 0 0
1610 0 0 0 0 0 0 0 0 0 1610 0 0 0 0 0 0 0 0 0
1620 0 0 0 0 0 0 0 0 0 1620 0 0 0 0 0 0 0 0 0
1630 0 0 0 0 0 0 0 0 0 163 0 0 0 0 0 0 0 0 0 0
1640 0 0 0 0 0 0 0 0 0 1640 0 0 0 0 0 0 0 0 0
1650 0 0 0 0 0 0 0 0 0 1650 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1660 0 0 0 0 0 0 0 0 0

Table $.1.c Simulation Results GINPO. Table S.l.d Simulation Results GINPO.

(9 = 90", Iq = 156, peak = 48). (0 = 900, q = 156, peak = 48).

After Main Windows. After Overlapping Windows.

860

Table IX.3 SIMULATION RESULTS OF PEAK DETECTION SCHEME

'WiN 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141

1240 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2
1250 0 0 0 0 0 0 0 0 0 0 0 0 1 5 1 1
1260 0 0 0 0 0 0 0 0 0 0 0 0 2 14 2 1
1270 0 1 0 0 0 0 0 0 0 0 0 0 1 44 2 3
1280 0 0 0 0 0 0 0 2 0 0 0 1 3 4 1 3
1290 0 0 0 0 0 0 0 0 0 0 0 3 3 2 2 0
1300 0 0 0 0 0 0 1 0 0 0 0 2 1 1 2 2
1310 0 0 0 0 0 0 1 0 0 0 0 2 3 2 3 3
1320 1 0 0 0 0 0 0 0 1 0 0 2 11 3 3 0
1330 1 0 0 0 0 0 1 0 0 0 0 2 14 2 0 3
1340 0 0 0 0 0 0 1 0 0 0 3 3 18 2 2 1
1350 0 0 0 0 0 1 0 0 0 0 2 1 12 3 3 0
1360 0 0 0 0 0 1 0 0 0 0 3 2 14 3 3 0
1370 0 0 0 0 0 0 0 0 0 0 2 11 5 2 1 0
138 1 0 0 0 0 0 0 0 0 0 0 3 11 4 3 0 0
139 1 0 0 0 0 0 2 0 1 0 3 3 6 4 3 0 0
1400 0 0 0 0 0 0 0 0 0 3 2 12 3 1 0 0
1410 0 0 0 0 1 0 0 0 0 3 7 14 4 0 0 0
1420 0 0 0 0 1 0 0 0 0 3 7 10 3 0 0 1
1430 0 0 0 0 0 0 0 0 0 3 11 10 0 0 0 0
1440 0 0 0 0 2 0 0 0 4 4 9 11 0 0 0 0
1450 0 0 0 0 0 0 1 0 4 7 10 7 0 0 0 0
1460 0 0 0 1 0 0 0 0 3 8 9 1 0 0 1 0
1470 0 0 0 1 0 0 0 0 5 13 8 0 0 0 0 0
1480 0 0 0 0 0 0 0 2 6 14 8 0 0 0 0 0
1490 0 0 0 2 0 0 0 6 11 4 5 0 0 1 0 0
1500 0 0 0 0 0 0 0 6 19 4 4 0 0 0 0 0
151 0 0 0 1 0 0 1 0 5 5 1 5 0 0 0 0 1
1520 0 0 1 0 0 0 0 24 5 3 4 1 1 0 0 0
1530 0 0 0 0 0 0 9 10 2 7 4 0 0 0 0 0
1540 0 0 2 0 0 1 21 2 2 4 2 0 0 0 0 0
1550 0 0 0 0 0 4 20 3 3 3 0 1 0 0 0 0
1560 0 1 0 0 1 7 2 3 1 5 0 0 0 0 0 0
1570 0 1 0 1 6 23 1 3 3 5 1 0 0 0 0 0
1580 0 2 0 3 6 15 2 I 4 4 0 0 0 0 0 0
1590 0 0 2 4 6 1 3 3 5 3 0 0 0 0 0 0
1600 0 1 3 4 12 2 3 2 2 5 0 0 0 0 0 0
1610 2 2 4 5 20 1 2 1 3 3 0 0 0 0 1 0
1620 3 4 3 7 1 2 2 2 4 0 1 0 0 0 0 0
163 1 4 3 5 7 2 3 1 3 4 0 0 0 0 0 0 0
1642 2 3 4 15 1 2 3 6 4 0 0 0 0 0 0 0
1655 4 3 5 6 2 3 1 2 5 0 0 0 0 0 0 0
1664 3 3 5 1 1 1 3 3 2 0 0 0 0 0 0 0
1674 2 4 102 3 1 2 2 3 0 0 0 0 0 0 0
IM2 3 5 9 1 1 4 2 3 3 0 0 0 0 0 0 0
1692 3 5 3 2 3 1 5 3 0 0 0 0 0 1 0 0
1703 5 7 2 2 2 1 2 4 0 0 0 0 0 0 0 0
1712 2 6 1 2 1 2 3 3 0 1 0 0 0 0 0 0

Simulation Results Noisy Input Image. Target Seeker Trajectory.
(0 = 135, ,i = 127, peak = 44) & Representation of a curve.

Parameter Plane Representation (Three Degrees 0 Increments).

87

0

Table [X.4 SIMULATION RESULTS OF PEAK DETECTION SCHEME

(a) > 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141

1470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0
15100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1520 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0
1530 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1540 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0
1550 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0
1560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1570 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0
1580 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01580 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

110 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
1620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulation Results Noisy Input Image. Target Seeker Trajectory.

(0 = 1350 , Y = 127, peak = 44) & Representation of a curve.
After Thresholding (threshold = 19).

(b) 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141

1470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1530 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1570 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0
1580 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1610 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0
1620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulation Results Noisy Input Image. Target Seeker Trajectory.

(0 = 135, il = 127, peak = 44) & Representation of a curve.

After MtAain Windows.

880

SIA
0w

Table IX.4 SIMULATION RESULTS OF PEAK DETECTION SCHEME

(c) >'t 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141

1470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1520 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0
1530 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1560 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1570 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0
1580 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1610 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0
1620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1640 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Simulation Results Noisy Input Image. Target Seeker Trajectory.

(8 = 135 ° , i = 127, peak = 44) & Representation of a curve.

After Overlapping Windows (threshold = 19).

89

SECTION X

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS
The goal of this research was to develop an integrated target seeker system capable of

recognizing a target in a scene where other objects, such as decoys could be present. The prob-
lem was divided in two parts: multipixel target and single pixel target.

For the multipixel target, we first investigated the use of the M-transform (a translation
invariant transform,) and the neocognitron. After applying the M-transform to the image in the
original rectangular tessellation image, invariance to image translation would be achieved. If the
M-transform was applied to the computation plane image of the LSM, invariance to rotation and
tranlations would be achieved, The neocognitron would then be used for recognition, in either
case.

During the course of the research, it was discovered that this approach presented several
problems, as follows:

a. Translations, rotations and scaling could not be handled simultaneously

b. The M-transform is not one-to-one (this was shown by developing different syn-
thetic patterns all of which mapped to the same M-transformed pattern). Conse-
quently, this is not a robust method of pattern identification and classification.

c. The neocognitron itself is not a reliable classifier for complicated and noisy pat-
terns. This was also shown by comparing the results of neocognitron classification
with those of a first and a second order backpropagation network. The BPNs pro-
vided much better results.

It was decided, consequently, to use a different approach which is the one described in this
report.

After producing a binary edge image by means of the motion/edge detection algorithm, and
segmenting the image to windows containing individual objects by means of the segmentation
algorithm, the centroid of the gray level image was determined by means of the parallel analog
network/Hopfield-peak-detector combination. Notice that, after image segmentation and win-
dowing, all subsequent subsystems can operate on each window simultaneously (in parallel).

The original motion/edge detection algorithm was significantly modified in such a way that
the number of required operations was reduced by orders of magnitude and it is now possible to
implement the algorithm in real time.

We feel that the design of the analog connectionist network centroid calculator represents a
significant contribution, not only because it is an original design, but because of the possibility
of implementing it in VLSI. The SPICE simulations produced excellent agreement with the
theory and we showed that VLSI implementation is possible using current technology.

The centroid subsystem serves a dual purpose: It keeps the object's image centered on the
centroid, thus allowing simpler recognition by the MHONN, and also serves as a tracker of
object translation, by computing the displacement of the centroid from frame to frame. Notice

90

that scaling or rotations on the optical axis do not produce centroid displacements.T)

After the centroid of the object in each window is determined, the window is centered on 0
the centroid and then log-spiral-mapped (using arcs-of-ring tessellation) to the computation
plane. Two hardware approaches to the rectangular-to-exponential tessellation mapping have
been proposed, one hybrid and the other digital. Both are easily implementable using special
purpose circuitry.

The modified higher order neural network classifies the object in each window. Due to the 0
use of the centroid calculator, this network has to deal only with scalings and rotations, which,
due to the use of the LSM computation plane image, become equivalent to translations on the
vertical and horizontal axes, respectively. Simulations have shown that the MHONN is very
robust and produces reliable results not only for objects of different sizes and orientations, but
for images with significant noise content.

The MHONN was significantly improved by means of an architectural change that allows a
reduction of orders of magnitude in the number of afferent weights. This, in turn, will make it
possible to implement the proposed hybrid circuit using VLSI technology. As is the case with
the centroid calculator, we believe that both the new HONN design and the proposed hardware
implementation represent significant contributions.

The line-correlator-target-tracker has the ability of tracking displacements either in the rec-
tangular tessellation image plane, or in exponential tessellation computation plane. By using it
in the latter, rotations and scalings can be determined. Combining the centroid tarcking of dis-
placements with the LCT tracking of rotation/scaling, an accurate account of changes in x-y-z
position of the object in the window selected by the MHONN, as well as changes in orientation,
is achieved. A Hopfield-Tank neural network implementation of the LCT has been designed and
can be implemented in VLSI.

The above summary of the multipixel branch of the system, shows that the goals of the pro-
ject have been achieved. What remains to be done is to design the hardware implementation of
some parts of the system, namely the motion/edge detector and segmentation/windowing.

The single pixel target system consists of two subsystems: the target trajectory detection
system and the Hough transform line detection system. A single pixel target can be detected only
based on trajectory continueity. The "on" pixels not belonging to the trajectories present in the
image are filtered out by the SPTDS. After this, an image containing only trajectories and possi-
bly some noise pixels, is obtained. The true trajectories have not, however, been identified yet.
This is done by the Hough transform algorithm which also determines the coordinates of the last
trajectory position.

The SPTDS has the potential of highly parallel implementation. A hardware implementa-
tion has not been developed yet. However, a hardware design for the Hough transform line
detector has been developed. It consists in a parallel mapping from image to accumulator plane,
plus a Hopfield network for peak detection. Both are VLSI implementable.

The complete subsystem has produced very satisfactory results in simulations using images
with real background and simulated noise. The system is highly immune to noise.

2. RECOMMENDATIONS
1. Motion/edge detection. Further algorithm simplification for the purpose of improving pro-

cessing time is recommended. A hardware design using DSP chips is necessary. With the

91

present algorithm processing time requirements this should be possible. If further develop-
ment reduces processing time, implementation should be simpler. Preliminary studies seem
to indicate that an ANN implementation is also feasible. This study is also recommended.

2. Image segmentation. The segmentation algorithm is easily implementable by means of a
general purpose digital computer. A dedicated processor would enhance system speed. It
should be decided whether it is more convenient to use the master control processor or a
dedicated one for segmentation algorithm implementation.

3. Centroid determination. This subsystem is completely designed, including hardware cir-
cuit. What remains to be done is to determine whether it is possible to use a single VLSI
chip or more than one will be necessary. The VLSI lay out can then be produced.

4. Logarithmic spiral mapping. This is straight forward and the special digital hardwa,.
implementation can be used.

5. Multipixel target recognition. The same observations made with respect to Centroid
determination apply. The system has been designed using a hybrid hardware circuit. It
remains to determine the possibility of single or multichip implementation and VLSI circuit
lay out.

6. Line-correlator target tracker. Early in the research, a special purpose digital processor
implementation was proposed. Later, a Hopfield neurai network implementation was
developed and simulated. It seems that present VLSI technology is insufficient for imple-
mentation of a 128x128 image. A lower resolution, 32x32, should be VLSI implementable.
A VLSI lay out for key parts of the circuit has been developed and is presented in the
Engineering Drawings report. It is recommended that further research be performed on the
possibility of full resolution (128x 128) implementation.

7. Single pixel target detection. The trajectory detection system hardware has to be studied
in more detail. It is necessary, first of all, to determine whether present technology will
allow implementation of the huge number of processing elements and associated connec-
tions required by the algorithm, both in its digital and its analog (ANN) parts. Once this
study is completed, assuming that hardware implementation is feasible, a complete circuit
design and VLSI lay out will be required.

8. Hough transform single pixel target detection. It has been shown that a multichip
128x128 resolution implementation, or a single pixel 32x32, is possible. What remains to
be done is a VLSI lay out for both cases.

In addition to the above, it is necessary to consider that a master processor is needed to con-
trol signal flow, timing, etc. for the overall system.

92

SECTION XI

REFERENCES

[1] Holler, M., et al., "An electrically trainable artificial neural network (ETANN) with 1024
floating gate synapses," Proc. of the IJCNN, Washington, DC, June 1989.

[2] Fisher, W. A., et al., "A programmable analog neural network processor," IEEE Trans. on
Neural Networks,, vol. 2, no. 2, March 1991.

[3] Canny, J., "A computational Approach to Edge Detection," IEEE Trans. PAMI, vol. PAMI
8, no. 6, November 1986.

[4] Korn, A. F., "Toward a Symbolic Representation of Intensity Changes in Images," IEEE
trans. PAMI, vol. 10, no. 5, September 1988.

[5] Hsing, C., Inigo, R. M. and McVey, E. S., "Image Motion Detection and Estimation," Joint
SPIE-IECON Conf., Philadelphia, PA, November 5, 1989.

[[6] Burt, P., "Fast Filter Transforms for Image Processing," Computer Graphics and Image
Processing, vol. 16, No. 1, 1981.

[7] Hopfield, J.J., "Neural Networks and Physical Systems with Emergent Collective Computa-
tional Abilities," Proceedings of the National Academy of Science, USA, vol. 79, pp. 2554-
2558, 1982.

[81 Hopfield, J.J., "Neurons with Graded Response Have Collective Computational Properties
Like Those of 2-State Neurons", Proceedings of the National Academy of Science, USA,
vol. 81, pp. 3088-3092, 1984.

[9] Hopfield, J.J. and Tank, D.W., "'Neural' Computation of Decisions in Optimization Prob-
lems," Biological Cybernetics 52, pp. 141-152, 1985.

[10] Hopfield, John J. and Tank, David W., "Simple 'Neural' Optimization Networks: An A/D
Converter, Signal Decision Circuit, and a Linear Programming Circuit," IEEE Transactions
on Circuits and Systems, Vol. CAS-33, No. 5, pp. 533-541, May 1986.

[11] Reid, M. B. et al., "Simultaneous Position, Scaling and Rotation Invariant Pattern
Classification Using Third Order Neural Networks," Int. Journal NNs-Research and Appli-
cations, vol. 1, no. 3, pp. 154-159, July 1989.

[12] Lee, Y. C. and Doolen, G., "Machine Learning using a Higher Order Correlation Network,"
Physica, 22D, pp. 276-306, 1986.

[13] Rosenblatt, F., "Principles of Neurodynamics: Perceptions and the Theory of Brain
Mechanisms," Spartan Books, 1961.

[14] Minsky, M. L. and Papert, S., Perceptron, MIT Press, Cambridge, MA, 1969.

[15] Marr, D., "A Theory for the Cerebral Cortex," Proc. Royal Soc., London, B176, pp. 161-
234, 1970.

[16] Kohonen, T. et al., "A Principle of Neural Associative Memory," Neuroscience, vol. 2, pp.
1065-1076, 1977.

93

[17] Kohonen et al., "Storage and : cessing of Information in Distributed Associative Memory
Systems," in Parallel Mode4ls ,f Asso. Mem., Hinton and Anderson, Ed. Chap 4., 1981. 0

[18] Aloimonos, J. and Basu, A.,"Shape and 3D Motion from Contour Without Point to Point
Correspondence: General Principles," Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 518-527, 1986.

[19] KatanatiA., "Tracing Planar Surface Motion from Projection Without Knowing the
Correspondence," Computer Vision, Graphics and Image Processing, 21, 205-221, 1983. 0

[20 Hopfield, J.J., and Tank, D.W., "'Neural' Computation of Decisions in Optimization Prob-
lems", Biological Cybernetics 52, pp. 141-152, 1985.

[21] Jain, A.N., and Kring, D.B., "A Robust Hough Transform Technique", VISION, SME,
pp. 1-4, Fall 1987.

94

